headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Transition of breakup modes for a liquid jet in a static electric field; pp. 449–456

(Full article in PDF format) doi: 10.3176/proc.2015.3S.16


Authors

Takao Yoshinaga, Takasumi Iwai

Abstract

We analytically investigate breakup phenomena of a viscous liquid column jet closely placed in a concentric sheath on which a static electric field is imposed.Taking account of a surrounding electric field of the jet, long wave nonlinear equations of the jet radius, velocity, and electric surface charge density are derived.These equations are numerically solved for the initial-boundary condition that a semi-spherical jet initially emanates from a nozzle exit. It is shown that there exist three types of breakup modes – jetting, spraying, and spinning – depending upon the parameters Λ (electric force/fluid inertial force) and Pe (convective current/conductive current). Then, critical curves are found in the Λ-Pe parameter space, across which the mode is transferred from the jetting to the spinning through the spraying with the increase of Λ and/or the decrease of Pe. In the transition from jetting to spraying mode, the produced drop size gradually decreases with the increase of Λ for larger Pe. On the other hand, there is a range of Λ where the drop size discontinuously decreases with increasing Λ for smaller Pe, which may lead to producing a satellite drop.

Keywords

liquid jet, electric field, instability, electro-spraying, electro-spinning.

References

  1. Li , D. and Xia , Y. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. , 2004 , 16 , 1151–1170.
http://dx.doi.org/10.1002/adma.200400719

  2. Castellanos , A. Electrohydrodynamics (Castellanos , A. , ed.). Springer , Wien , 1998.
http://dx.doi.org/10.1007/978-3-7091-2522-9

  3. Lord Rayleigh. On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. , 1882 , 14 , 184–186.
http://dx.doi.org/10.1080/14786448208628425

  4. Taylor , G. I. Electrically driven jets. P. Roy. Soc. Lond. A Mat. , 1969 , 313 , 453–475.

  5. Cloupeau , M. and Prunet-Foch , B. Electrohydrodynamic spraying functioning modes: critical review. J. Aerosol Sci. , 1994 , 25 , 1021–1036.
http://dx.doi.org/10.1016/0021-8502(94)90199-6

  6. Fernández de la Mora , J. The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. , 2007 , 39 , 217–243.
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110159

  7. Barrero , A. and Loscertales , I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. , 2007 , 39 , 89–106.
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110245

  8. Collins , T. T. , Jones , J. J. , Harris , M. T. , and Basaran , O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. , 2008 , 4 , 149–154.
http://dx.doi.org/10.1038/nphys807

  9. Yoshinaga , T. and Iwai , T. Breakup of a liquid column jet in a static electric field. Theoretical and Applies Mechanics Japan , 2013 , 62 , 219–226.

10. Saville , D. A. Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. , 1997 , 29 , 27–64.
http://dx.doi.org/10.1146/annurev.fluid.29.1.27

11. Melcher , J. R. and Warren , E. P. Electrohydrodynamics of a current-carrying semi-insulating jet. J. Fluid Mech. , 1971 , 47 , 127–143.
http://dx.doi.org/10.1017/S0022112071000971

12. Ganan-Calvo , A. M. On the theory of electrohydrodynamically driven capillary jets. J. Fluid Mech. , 1997 , 335 , 165–188.
http://dx.doi.org/10.1017/S0022112096004466

13. Hohman , M. M. , Shin , M. , Rutledge , G. , and Brenner , M. P. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids , 2001 , 13 , 2201–2220.
http://dx.doi.org/10.1063/1.1383791

14. Yabe , T. and Aoki , T. A universal solver for hyperbolic equations by cubic-polynomial interpolation. I. One-dimensional solver. Comput. Phys. Commun. , 1991 , 66 , 219–232.
http://dx.doi.org/10.1016/0010-4655(91)90071-R

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December