headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Parameterization of run-up characteristics for long bell-shaped solitary waves propagating in a bay of parabolic cross-section; pp. 234–239

(Full article in PDF format) doi: 10.3176/proc.2015.3.05


Authors

Oleg Didenkulov, Ira Didenkulova, Efim Pelinovsky

Abstract

Run-up of solitary waves of different bell-like shapes (solitary-like and Lorentz-like waves and sine-like pulses) is studied in a linearly inclined bay of parabolic cross-section. Their maximum run-up heights, maximum water flow velocities, and parameters of wave breaking on the beach are calculated, compared, and discussed. It is shown that these parameters for different pulses of the same height and characteristic wavelength coincide with an acceptable accuracy, hence allowing parameterization of the corresponding formulas for run-up characteristics.

Keywords

nonlinear shallow water theory, long wave run-up on a beach, bay of parabolic cross-section.

References

Antuono , M. and Brocchini , M. 2007. The boundary value problem for the nonlinear shallow water equation. Stud. Appl. Math. , 119 , 71–91.
http://dx.doi.org/10.1111/j.1365-2966.2007.00378.x

Antuono , M. and Brocchini , M. 2008. Maximum run-up , breaking conditions and dynamical forces in the swash zone: a boundary value approach. Coast. Eng. , 55 , 732–740.
http://dx.doi.org/10.1016/j.coastaleng.2008.02.002

Antuono , M. and Brocchini , M. 2010. Solving the nonlinear shallow-water equations in physical space. J. Fluid Mech. , 643 , 207–232.
http://dx.doi.org/10.1017/S0022112009992096

Brocchini , M. and Gentile , R. 2001. Modelling the run-up of significant wave groups. Cont. Shelf Res. , 21 , 1533–1550.
http://dx.doi.org/10.1016/S0278-4343(01)00015-2

Carrier , G. and Greenspan , H. 1958. Water waves of finite amplitude on a sloping beach. J. Fluid Mech. , 4 , 97–109.
http://dx.doi.org/10.1017/S0022112058000331

Carrier , G. , Wu , T. , and Yeh , H. 2003. Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. , 475 , 79–99.
http://dx.doi.org/10.1017/S0022112002002653

Didenkulova , I. 2009. New trends in the analytical theory of long sea wave runup. In Applied Wave Mathematics: Selected Topics in Solids , Fluids , and Mathematical Methods (Quak , E. and Soomere , T. , eds). Springer , 265–296.
http://dx.doi.org/10.1007/978-3-642-00585-5_14

Didenkulova , I. 2013. Tsunami runup in narrow bays: the case of Samoa 2009 tsunami. Nat. Hazards , 65 , 1629–1636.
http://dx.doi.org/10.1007/s11069-012-0435-7

Didenkulova , I. and Pelinovsky , E. 2008. Run-up of long waves on a beach: the influence of the incident wave form. Oceanology , 48 , 1–6.
http://dx.doi.org/10.1134/S0001437008010013

Didenkulova , I. and Pelinovsky , E. 2011a. Nonlinear wave evolu­tion and runup in an inclined channel of a para­bolic cross-section. Phys. Fluids , 23 , 086602.
http://dx.doi.org/10.1063/1.3623467

Didenkulova , I. and Pelinovsky , E. 2011b. Runup of tsunami waves in U-shaped bays. Pure Appl. Geophys. , 168 , 1239–1249.
http://dx.doi.org/10.1007/s00024-010-0232-8

Didenkulova , I. , Zahibo , N. , Kurkin , A. , and Pelinovsky , E. 2006. Steepness and spectrum of a nonlinearly deformed wave on shallow waters. Izv. , Atm. Ocean. Phys. , 42 , 773–776.
http://dx.doi.org/10.1134/S0001433806060119

Didenkulova , I. , Kurkin , A. , and Pelinovsky , E. 2007a. Run-up of solitary waves on slopes with different profiles. Izv. , Atm. Ocean. Phys. , 43 , 384–390.
http://dx.doi.org/10.1134/S0001433807030139

Didenkulova , I. , Pelinovsky , E. , Soomere , T. , and Zahibo , N. 2007b. Runup of nonlinear asymmetric waves on a plane beach. In Tsunami & Nonlinear Waves (Kundu , A. , ed.). Springer , 175–190.
http://dx.doi.org/10.1007/978-3-540-71256-5_8

Didenkulova , I. , Pelinovsky , E. , and Zahibo , N. 2008. Reflec­tion of long waves from a “non-reflecting” bottom profile. Fluid Dynamics , 43 , 101–107.
http://dx.doi.org/10.1134/S001546280804011X

Kânoğlu , U. 2004. Nonlinear evolution and runup-drawdown of long waves over a sloping beach. J. Fluid Mech. , 513 , 363–372.
http://dx.doi.org/10.1017/S002211200400970X

Kânoğlu , U. and Synolakis , C. 2006. Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett. , 97 , 148501.
http://dx.doi.org/10.1103/PhysRevLett.97.148501

Madsen , P. and Fuhrman , D. 2008. Run-up of tsunamis and periodic long waves in terms of surf-similarity. Coast. Eng. , 55 , 209–223.
http://dx.doi.org/10.1016/j.coastaleng.2007.09.007

Okal , E. , Fritz , H. , Synolakis , C. , Borrero , J. , Weiss , R. , Lynett , P. , et al. 2010. Field survey of the Samoa tsunami of 29 September 2009. Seismol. Res. Lett. , 81 , 577–591.
http://dx.doi.org/10.1785/gssrl.81.4.577

Pedersen , G. and Gjevik , B. 1983. Runup of solitary waves. J. Fluid Mech. , 142 , 283–299.
http://dx.doi.org/10.1017/S0022112083003080

Pelinovsky , E. 1982. Nonlinear Dynamics of Tsunami Waves. IPF RAN , Akad. Nauk SSSR , Gorky [in Russian].

Pelinovsky , E. and Mazova , R. 1992. Exact analytical solu­tions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Natur. Hazards , 6 , 227–249.
http://dx.doi.org/10.1007/BF00129510

Spielvogel , L. 1975. Runup of single waves on a sloping beach. J. Fluid Mech. , 74 , 685–694.
http://dx.doi.org/10.1017/S0022112076002000

Synolakis , C. 1987. The runup of solitary waves. J. Fluid Mech. , 185 , 523–545.
http://dx.doi.org/10.1017/S002211208700329X

Tadepalli , S. and Synolakis , C. 1994. The runup of N-waves on sloping beaches. P. Roy. Soc. Lond. , A , 445 , 99–112.

Tinti , S. and Tonini , R. 2005. Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean. J. Fluid Mech. , 535 , 33–64.
http://dx.doi.org/10.1017/S0022112005004532

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December