headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Some remarks on the stability and instability properties of solitary waves for the double dispersion equation; pp. 263–269

(Full article in PDF format) doi: 10.3176/proc.2015.3.09


Authors

Hüsnü Ata Erbay, Saadet Erbay, Albert Erkip

Abstract

 

In this article we give a review of our recent results on the instability and stability properties of travelling wave solutions of the double dispersion equation utt – uxx + auxxxx – buxxtt = – (|u|p–1u)xx for p > 1, a ³ b > 0. After a brief reminder of the general class of nonlocal wave equations to which the double dispersion equation belongs, we summarize our findings for both the existence and orbital stability/instability of travelling wave solutions to the general class of nonlocal wave equations. We then state (i) the conditions under which travelling wave solutions of the double dispersion equation are unstable by blow-up and (ii) the conditions under which the travelling waves are orbitally stable. We plot the instability/stability regions in the plane defined by wave velocity and the quotient b/a for various values of p.

 

Keywords

double dispersion equation, Boussinesq equation, solitary waves, instability by blow-up, orbital stability, travelling waves.

References

  1. Erbay , H. A. , Erbay , S. , and Erkip , A. Existence and stability of traveling waves for a class of nonlocal nonlinear equations. J. Math. Anal. Appl. , 2015 , 425 , 307–336.
http://dx.doi.org/10.1016/j.jmaa.2014.12.039

  2. Erbay , H. A. , Erbay , S. , and Erkip , A. Instability and stability properties of traveling waves for the double dispersion equation. http://arxiv.org/pdf/1407.2022.pdf

  3. Samsonov , A. M. Strain Solitons in Solids and How to Construct Them. Chapman and Hall , Boca Raton , 2001.
http://dx.doi.org/10.1201/9781420026139

  4. Porubov , A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific , Singapore , 2003.
http://dx.doi.org/10.1142/5238

  5. Christov , C. I. , Maugin , G. A. , and Porubov , A. V. On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mécanique , 2007 , 335 , 521–535.
http://dx.doi.org/10.1016/j.crme.2007.08.006

  6. Engelbrecht , J. , Salupere , A. , and Tamm , K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion , 2011 , 48 , 717–726.
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001

  7. Boussinesq , J. Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal , en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. , 1872 , 17 , 55–108.

  8. Ostrovskii , L. A. and Sutin , A. M. Nonlinear elastic waves in rods. J. Appl. Math. Mech. , 1977 , 41 , 543–549.
http://dx.doi.org/10.1016/0021-8928(77)90046-6

  9. Duruk , N. , Erkip , A. , and Erbay , H. A. A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity. IMA J. Appl. Math. , 2009 , 74 , 97–106.
http://dx.doi.org/10.1093/imamat/hxn020

10. Duruk , N. , Erbay , H. A. , and Erkip , A. Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity , 2010 , 23 , 107–118.
http://dx.doi.org/10.1088/0951-7715/23/1/006

11. Stubbe , J. Existence and stability of solitary waves of Boussinesq-type equations. Port. Math. , 1989 , 46 , 501–516.

12. Babaoglu , C. , Erbay , H. A. , and Erkip , A. Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equations. Nonlinear Anal. , 2013 , 77 , 82–93.
http://dx.doi.org/10.1016/j.na.2012.09.001

13. Erbay , H. A. , Erbay , S. , and Erkip , A. Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal nonlinear wave equations. Nonlinear Anal. , 2014 , 95 , 313–322.
http://dx.doi.org/10.1016/j.na.2013.09.013

14. Lions , P. L. The concentration-compactness principle in the calculus of variation: The locally compact case part 1. Ann. I. H. Poincare-An. , 1984 , 1 , 109–145.

15. Lions , P. L. The concentration-compactness principle in the calculus of variation: The locally compact case part 2. Ann. I. H. Poincare-An. , 1984 , 1 , 223–283.

16. Bona , J. L. and Sachs , R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys. , 1988 , 118 , 15–29.
http://dx.doi.org/10.1007/BF01218475

17. Levine , H. A. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = –Au + f (u). Tr. Am. Math. Soc. , 1974 , 192 , 1–21.
http://dx.doi.org/10.2307/1996814

18. Liu , Y. , Ohta , M. , and Todorova , G. Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations. Ann. I. H. Poincare-An. , 2007 , 24 , 539–548.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December