headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Numerical simulation of capillary gravity waves excited by an obstacle in shallow water; pp. 278–284

(Full article in PDF format) doi: 10.3176/proc.2015.3.11


Authors

Motonori Hirata, Shinya Okino, Hideshi Hanazaki

Abstract

Capillary gravity waves excited by an obstacle are investigated by numerical simulations. Under the resonant condition for which large-amplitude solitary waves are generated, solutions of the Euler equations show that the capillary effects induce the generation of short waves both upstream of the solitary waves and downstream of the obstacle. Overall characteristics of these waves agree with the weakly nonlinear theory, although the theory overestimates the wavelength of the upstream short waves.

Keywords

capillary gravity wave, numerical simulation, weakly nonlinear theory.

References

  1. Vanden-Broeck , J.-M. Gravity-Capillary Free-Surface Flows. Cambridge University Press , 2010.
http://dx.doi.org/10.1017/CBO9780511730276

  2. Lee , S.-J. , Yates , G. T. , and Wu , T. Y. Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances. J. Fluid. Mech. , 1989 , 199 , 569–593.
http://dx.doi.org/10.1017/S0022112089000492

  3. Choi , J. , Sun , S.-M. , Oh , S. , Lee , D. , and Whang , S.-I. Numerical and experimental study of Scott Russell’s solitary waves. B. Am. Phys. Soc. , 2010 , 55 , 66.

  4. Zhang , D. and Chwang , A. T. Numerical study of nonlinear shallow waves produced by a submerged moving disturbance in viscous flow. Phys. Fluids , 1995 , 8 , 147–155.
http://dx.doi.org/10.1063/1.868822

  5. Grimshaw , R. H. J. and Smith , N. Resonant flow of a stratified fluid over topography. J. Fluid Mech. , 1986 , 169 , 429–464.
http://dx.doi.org/10.1017/S002211208600071X

  6. Zhang , D. and Chwang , A. T. Generation of solitary waves by forward- and backward-step bottom forcing. J. Fluid Mech. , 2001 , 432 , 341–350.

  7. Zhu , Y. Resonant generation of nonlinear capillary-gravity waves. Phys. Fluids , 1995 , 7 , 2294–2296.
http://dx.doi.org/10.1063/1.868479

  8. Akylas , T. R. On the excitation of long nonlinear waves by a moving pressure distribution. J. Fluid Mech. , 1984 , 141 , 455–466.
http://dx.doi.org/10.1017/S0022112084000926

  9. Wu , T. Y. Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. , 1987 , 184 , 75–99.
http://dx.doi.org/10.1017/S0022112087002817

10. Milewski , D. and Vanden-Broeck , J.-M. Time dependent gravity-capillary flows past an obstacle. Wave Motion , 1998 , 29 , 63–79.
http://dx.doi.org/10.1016/S0165-2125(98)00021-3

11. Karpman , V. I. Radiation by solitons due to higher-oder dispersion. Phys. Rev. E , 1993 , 47 , 2073–2082.
http://dx.doi.org/10.1103/PhysRevE.47.2073

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December