headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Implications of the theory of turbulent mixing for wave propagation in media with fluctuating coefficient of refraction; pp. 285–290

(Full article in PDF format) doi: 10.3176/proc.2015.3.12


Authors

Jaan Kalda, Mihkel Kree

Abstract

Based on ray tracing approach, light propagation in inhomogeneous media with fluctuating coefficient of refraction n = n (r) can be interpreted as a chaotic mixing of the wavefront in the 6-dimensional phase space where the spatial coordinates are complemented by the respective wave vector components. According to ray tracing, the evolution of wave vectors follows Hamiltonian dynamics and hence, according to the Liouville’s theorem, the mixing of the wave front takes place in an incompressible flow field. We use this approach to show that the brightest light speckles in inhomogeneous media follow a power law intensity distribution, and to derive the relevant scaling exponents.

Keywords

light propagation in inhomogeneous media, chaotic mixing.

References

  1. Wheelon , A. D. Electromagnetic Scintillation: Volume 1 , Geometrical Optics. Cambridge University Press , Cambridge , UK , 2001.

  2. Korotkova , O. Random Light Beams: Theory and Applications. Taylor and Francis , Hoboken , NJ , 2013.
http://dx.doi.org/10.1201/b15471

  3. Klyatskin , V. I. Electromagnetic wave propagation in a randomly inhomogeneous medium as a problem in mathematical statistical physics. Physics–Uspekhi , 2004 , 47(2) , 169–186.
http://dx.doi.org/10.1070/PU2004v047n02ABEH001685

  4. Bal , G. , Komorowski , T. , and Ryzhik , L. Kinetic limits for waves in a random medium. Kinetic and Related Models , 2010 , 3(4) , 529–644.
http://dx.doi.org/10.3934/krm.2010.3.529

  5. Falkovich , G. , Gawędzki , K. , and Vergassola , M. Particles and fields in fluid turbulence. Rev. Mod. Phys. , 2001 , 73(4) , 913–975.
http://dx.doi.org/10.1103/RevModPhys.73.913

  6. Richardson , L. F. Atmospheric diffusion shown on a distance-neighbour graph. P. Roy. Soc. Lond. A Mat. , 1926 , 110 , 709–737.

  7. Batchelor , G. K. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. , 1959 , 5 , 113–133.
http://dx.doi.org/10.1017/S002211205900009X

  8. Aref , H. Stirring by chaotic advection. J. Fluid Mech. , 1984 , 143 , 1–21.
http://dx.doi.org/10.1017/S0022112084001233

  9. Ottino , J. M. Mixing , chaotic advection , and turbulence. Annu. Rev. Fluid Mech. , 1990 , 22(1) , 207–254.
http://dx.doi.org/10.1146/annurev.fl.22.010190.001231

10. Sreenivasan , K. R. and Antonia , R. A. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. , 1997 , 29(1) , 435–472.
http://dx.doi.org/10.1146/annurev.fluid.29.1.435

11. Warhaft , Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. , 2000 , 32(1) , 203–240.
http://dx.doi.org/10.1146/annurev.fluid.32.1.203

12. Dimotakis , P. E. Turbulent mixing. Annu. Rev. Fluid Mech. , 2005 , 37(1) , 329–356.
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122015

13. Shraiman , B. I. and Siggia , E. D. Scalar turbulence. Nature , 2000 , 405 , 639–646.
http://dx.doi.org/10.1038/35015000

14. Toschi , F. and Bodenschatz , E. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. , 2009 , 41(1) , 375–404.
http://dx.doi.org/10.1146/annurev.fluid.010908.165210

15. Grabowski , W. W. and Wang , L.-P. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. , 2013 , 45(1) , 293–324.
http://dx.doi.org/10.1146/annurev-fluid-011212-140750

16. Kalda , J. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett. , 2000 , 84(3) , 471–474.
http://dx.doi.org/10.1103/PhysRevLett.84.471

17. Kalda , J. On the multifractal properties of passively con\-vected scalar fields. In Paradigms of Complexity. Fractals (Novak , M. , ed.). World Scientific , Singapore , 2000 , 193–201.

18. Kalda , J. k-spectrum of decaying , aging and growing passive scalars in Lagrangian chaotic fluid flows. J. Phys. Conf. Ser. , 2011 , 318(5) , 052045.
http://dx.doi.org/10.1088/1742-6596/318/5/052045

19. Ainsaar , S. and Kalda , J. On the effect of finite-time correlations on the turbulent mixing in smooth chaotic compressible velocity fields. Proc. Estonian Acad. Sci. , 2015 , 64 , 1–7.
http://dx.doi.org/10.3176/proc.2015.1.01

20. Kalda , J. Sticky particles in compressible flows: aggregation and Richardson’s law. Phys. Rev. Lett. , 2007 , 98(6) , 064501.
http://dx.doi.org/10.1103/PhysRevLett.98.064501

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December