headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Asymmetric waves in wave energy systems analysed by the stochastic Gauss–Lagrange wave model; pp. 291–296

(Full article in PDF format) doi: 10.3176/proc.2015.3.13


Authors

Georg Lindgren

Abstract

The Gauss–Lagrange stochastic wave model is known to produce irregular waves with realistic degrees of asymmetry. We present the basic structure of the model and illustrate three of its characteristic properties: front–back asymmetry, particle orbits, and average horseshoe pattern. We also study the effect of a linear filter in a wave energy converting system on asymmetry and on average power of the system.

Keywords

directional spreading, front–back asymmetry, horseshoe pattern, particle orbit, wave energy, wave steepness.

References

  1. Aberg , S. Wave intensities and slopes in Lagrangian seas. Adv. Appl. Probab. , 2007 , 39 , 1020–1035.
http://dx.doi.org/10.1239/aap/1198177237

  2. Aberg , S. and Lindgren , G. Height distribution of stochastic Lagrange ocean waves. Probabilist. Eng. Mech. , 2008 , 23 , 359–363.
http://dx.doi.org/10.1016/j.probengmech.2007.08.006

  3. Eriksson , M. , Isberg , J. , and Leijon , M. Hydrodynamic modelling of a direct drive wave energy converter. Int. J. Eng. Sci. , 2005 , 43 , 1377–1387.
http://dx.doi.org/10.1016/j.ijengsci.2005.05.014

  4. Fouques , S. , Krogstad , H. E. , and Myrhaug , D. A second order Lagrangian model for irregular ocean waves. J. Offshore Mech. Arct. , 2006 , 128 , 177–183.
http://dx.doi.org/10.1115/1.2199563

  5. Gerstner , F. J. Theorie der Wellen. Ann. Phys. , 1809 , 32 , 420–440.
http://dx.doi.org/10.1002/andp.18090320808

  6. Gjøsund , S. H. A Lagrangian model for irregular waves and wave kinematics. J. Offshore Mech. Arct. , 2003 , 125 , 94–102.
http://dx.doi.org/10.1115/1.1554702

  7. Herber , D. R. and Allison , J. T. Wave energy extraction maximization in irregular ocean waves using pseudospectral methods. In Proceedings of the ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE) , August 4–7 , 2013 , Portland , OR , DETC2013-12600 , 2013.
http://dx.doi.org/10.1115/detc2013-12600

  8. Leykin , I. A. , Donelan , M. A. , Mellen , R. H. , and McLaughlin , D. J. Asymmetry of wind waves studied in a laboratory tank. Nonlinear Proc. Geoph. , 1995 , 2 , 280–289.
http://dx.doi.org/10.5194/npg-2-280-1995

  9. Lindgren , G. Slepian models for the stochastic shape of individual Lagrange sea waves. Adv. Appl. Probab. , 2006 , 38 , 430–450.
http://dx.doi.org/10.1239/aap/1151337078

10. Lindgren , G. Exact asymmetric slope distributions in stochastic Gauss-Lagrange ocean waves. Appl. Ocean Res. , 2009 , 31 , 65–73.
http://dx.doi.org/10.1016/j.apor.2009.06.002

11. Lindgren , G. Slope distributions in front-back asymmetric stochastic Lagrange time waves. Adv. Appl. Probab. , 2010 , 42 , 489–508.
http://dx.doi.org/10.1239/aap/1275055239

12. Lindgren , G. WafoL – a Wafo Module for Analysis of Random Lagrange Waves – A Tutorial. Math. Stat. , Center for Math. Sci. , Lund Univ. Sweden , 2015. URL http://www.maths.lth.se/matstat/wafoL

13. Lindgren , G. and Lindgren , F. Stochastic asymmetry properties of 3D Gauss-Lagrange ocean waves with directional spreading. Stoch. Models , 2011 , 27 , 490–520.
http://dx.doi.org/10.1080/15326349.2011.593410

14. Lindgren , G. and Åberg , S. First order stochastic Lagrange models for front-back asymmetric ocean waves. J. Offshore Mech. Arct. , 2009 , 131 , 031602-1–8.
http://dx.doi.org/10.1115/1.3124134

15. Miche , M. Mouvements ondulatoires de la mer on profondeur constante ou décroissante. Forme limit de la houle lors de son déferlement. Application aux digues marines. Ann. Ponts Chaussées , 1944 , 114 , 25–78.

16. Myrhaug , D. and Kjeldsen , S. P. Parametric modelling of joint probability density distributions for steepness and asymmetry in deep water waves. Appl. Ocean Res. , 1984 , 6 , 207–220.
http://dx.doi.org/10.1016/0141-1187(84)90059-2

17. Niedzwecki , J. M. , van de Lindt , J. W. , and Sandt , E. W. Characterizing random wave surface elevation data. Ocean Eng. , 1999 , 26 , 401–430.
http://dx.doi.org/10.1016/S0029-8018(98)00007-9

18. Socquet-Juglard , H. , Dysthe , K. B. , Trulsen , K. , Fouques , S. , Liu , J. , and Krogstad , H. Spatial extremes , shape of large waves , and Lagrangian models. In Proceedings of a Workshop , ‘Rogue Waves’ , Brest , France , October 2004. URL http://www.ifremer.fr/web-com/stw2004/rw/ fullpapers/krogstad.pdf

19. St. Denis , M. and Pierson , W. J. On the motion of ships in confused seas. Soc. Naval Architects and Marine Engineers , Trans. , 1953 , 61 , 280–357.

20. Stelzer , M. A. and Joshi , R. P. Evaluation of wave energy generation from buoy heave response based on linear converter concepts. J. Renewable Sustainable Energy , 2012 , 4 , 063137-1–9.
http://dx.doi.org/10.1063/1.4771693

21. WAFO-group. WAFO – A Matlab Toolbox for Analysis of Random Waves and Loads – A Tutorial. Math. Stat. , Center for Math. Sci. , Lund Univ. Sweden , 2011. URL http://www.maths.lth.se/matstat/wafo

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December