headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Simulation of solitary wave propagation in carbon fibre reinforced polymer; pp. 297–303

(Full article in PDF format) doi: 10.3176/proc.2015.3.14


Authors

Martin Lints, Andrus Salupere, Serge Dos Santos

Abstract

The emergence and propagation of solitary waves is investigated for carbon fibre reinforced polymer using numerical simulations for Non-Destructive Testing (NDT) purposes. The simulations are done with the Chebyshev collocation method. The simplest laminate model is used for the periodical structure of the material from which dispersion will arise. Classical and nonclassical nonlinearities are introduced in the constitutive equation. The balance of the dispersion and nonlinearity is analysed by studying the shape-changing effects of the medium on the initial input pulse and the possibility of solitary wave propagation is considered. Future applications of solitary waves for nonlinear medical imaging and NDT of materials are discussed.

Keywords

CFRP, solitary waves, Non-Destructive Testing, TR–NEWS, nonlinearity, dispersion.

References

  1. Dos Santos , S. and Prevorovsky , Z. Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics. Ultrasonics , 2011 , 51 , 667–674.
http://dx.doi.org/10.1016/j.ultras.2011.01.008

  2. Frazier , M. , Taddese , B. , Antonsen , T. , and Anlage. , S. M. Nonlinear time reversal in a wave chaotic system. Phys. Rev. Lett. , 2013 , 110 , 063902.
http://dx.doi.org/10.1103/PhysRevLett.110.063902

  3. Dos Santos , S. and Plag , C. Excitation symmetry analysis method (ESAM) for calculation of higher order non-linearities. Int. J. Nonlinear. Mech. , 2008 , 43 , 164–169.
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.12.014

  4. Ilison , L. , Salupere , A. , and Peterson , P. On the propagation of localized perturbations in media with microstructure. Proc. Estonian Acad. Sci. Phys. Math. , 2007 , 56 , 84–92.

  5. Lomonosov , A. M. , Kozhushko , V. V. , and Hess , P. Laser-based nonlinear surface acoustic waves: from solitary to bondbreaking shock waves. In Proc. 18th ISNA. AIP , 2008 , 1022 , 481–490.
http://dx.doi.org/10.1063/1.2956264

  6. Engelbrecht , J. , Berezovski , A. , Pastrone , F. , and Braun , M. Waves in microstructured materials and dispersion. Philos. Mag. , 2005 , 85 , 4127–4141.
http://dx.doi.org/10.1080/14786430500362769

  7. LeVeque , R. J. Finite-volume methods for non-linear elasticity in heterogenous media. Int. J. Numer. Meth. Fl. , 2002 , 40 , 93–104.
http://dx.doi.org/10.1002/fld.309

  8. Berezovski , A. , Berezovski , M. , and Engelbrecht , J. Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Mat. Sci. Eng. , 2006 , 418 , 364–369.
http://dx.doi.org/10.1016/j.msea.2005.12.005

  9. Haupert , S. , Renaud , G. , Rivière , J. , Talmant , M. , Johnson , P. A. , and Laugier , P. High-accuracy acoustic detection of nonclassical component of material nonlinearity. J. Acoust. Soc. Am. , 2011 , 130 , 2654–2661.
http://dx.doi.org/10.1121/1.3641405

10. Vallikivi , M. , Salupere , A. , and Dai , H.-H. Numerical simulation of propagation of solitary deformation waves in a compressible hyperelastic rod. Math. Comput. Simulat. , 2012 , 82 , 1348–1362.
http://dx.doi.org/10.1016/j.matcom.2011.08.004

11. Porubov , A. Amplification of Nonlinear Strain Waves in Solids. Series on Stability , Vibration , and Control of Systems. World Scientific , 2003.
http://dx.doi.org/10.1142/5238

12. Kliakhandler , I. L. , Porubov , A. V. , and Velarde , M. G. Localized finite-amplitude disturbances and selection of solitary waves. Phys. Rev. E , 2000 , 62 , 4959–4962.
http://dx.doi.org/10.1103/PhysRevE.62.4959

13. Salupere , A. , Lints , M. , and Engelbrecht , J. On solitons in media modelled by the hierarchical KdV equation. Arch Appl. Mech. , 2014 , 84 , 1583–1593.
http://dx.doi.org/10.1007/s00419-014-0861-y

14. Solodov , I. Y. , Krohn , N. , and Busse , G. CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics , 2002 , 40 , 621–625.
http://dx.doi.org/10.1016/S0041-624X(02)00186-5

15. Gil , A. , Segura , J. , and Temme , N. Numerical Methods for Special Functions. Society for Industrial Mathematics , 2007.
http://dx.doi.org/10.1137/1.9780898717822

16. Trefethen , L. N. Spectral Methods in MATLAB. SIAM , 2000.
http://dx.doi.org/10.1137/1.9780898719598

17. Brown , P. N. , Byrne , G. D. , and Hindmarsh , A. C. VODE: A variable-coefficient ode solver. SIAM J. Sci. Stat. Comp. , 1989 , 10 , 1038–1051.
http://dx.doi.org/10.1137/0910062

18. Jones , E. , Oliphant , T. , Peterson , P. et al. SciPy: open source scientific tools for Python , 2001. http://www.scipy.org (accessed 12.08.2014).

19. LeVeque , R. J. and Yong , D. H. Solitary waves in layered nonlinear media. SIAM J. Appl. Math. , 2003 , 63 , 1539–1560.
http://dx.doi.org/10.1137/S0036139902408151

20. Dos Santos , S. , Vejvodova , S. , and Prevorovsky , Z. Nonlinear signal processing for ultrasonic imaging of material complexity. Proc. Estonian Acad. Sci. , 2010 , 59 , 108–117.
http://dx.doi.org/10.3176/proc.2010.2.08

 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December