headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 32, Issue 4
Vol. 32, Issue 3
Vol. 32, Issue 2
Vol. 32, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

CHARACTERIZATION OF DACHENGZI OIL SHALE FAST PYROLYSIS BY CURIE-POINT PYROLYSIS-GC-MS; pp. 134–150

(Full article in PDF format) doi: 10.3176/oil.2015.2.04


Authors

YIRU HUANG, XIANGXIN HAN, XIUMIN JIANG

Abstract

Fast pyrolysis of a Dachengzi oil shale sample was studied using a Curie-point pyrolyzer, the pyrolysis products were characterized online by gas chromatography-mass spectroscopy. Nine different Curie-point tempera­tures were chosen to investigate product distribution regularities. Hydro­carbons were the major components of the fast pyrolysis products of oil shale. n-Alkanes were generated at all the nine temperatures, while cyclo­alkanes only appeared at the temperatures above 485 °C. Branched alkanes were seldom produced at all the temperature points because of the bond cleavage at the branch point. Alkenes and aromatic compounds began to be formed at 386 °C and 423 °C separately, and their molecule sizes decreased with increasing pyrolysis temperature. Various oxygen-containing com­pounds, including ketones, acids, alcohols, esters and phenols, were identified in the shale oil components, indicating the wide existence of oxygen-containing functional groups.

Keywords

oil shale, pyrolysis, GC-MS, Curie-point, fast pyrolysis.

References

  1. Tiwari , P. , Deo , M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel , 2012 , 94 , 333–341.
http://dx.doi.org/10.1016/j.fuel.2011.09.018

  2. Batts , B. D. , Fathoni , A. Z. A literature review on fuel stability studies with particular emphasis on diesel oil. Energ. Fuel. , 1991 , 5(1) , 2–21.
http://dx.doi.org/10.1021/ef00025a001

  3. Dyni , J. R. Geology and resources of some world oil-shale deposits. Oil Shale , 2003 , 20(3) , 193–252.

  4. Altun , N. E. , Hicyilmaz , C. , Hwang , J.-Y. , Bagci , A. S. , Kök , M. V. Oil shales in the world and Turkey; reserves , current situation and future prospects: a review. Oil Shale , 2006 , 23(3) , 211–227.

  5. Yu , H. , Li , S. Y. , Jin , G. Z. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel. Energ. Fuel. , 2010 , 24(8) , 4419–4424.
http://dx.doi.org/10.1021/ef100531u

  6. Chen , X. B. , Shen , B. X. , Sun , J. P. , Wang , C. X. , Shan , H. H. , Yang , C. H. , Li , C. Y. Characterization and comparison of nitrogen compounds in hydro­treated and untreated shale oil by electrospray ionization (ESI) Fourier trans­form ion cyclotron resonance mass spectrometry (FT-ICR MS). Energ. Fuel. , 2012 , 26(3) , 1707–1714.
http://dx.doi.org/10.1021/ef201500r

  7. Rovere , C. E. , Crisp , P. T. , Ellis , J. , Korth , J. Chemical class separation of shale oils by low pressure liquid chromatography on thermally-modified adsorbants. Fuel , 1990 , 69(9) , 1099–1104.
http://dx.doi.org/10.1016/0016-2361(90)90062-U

  8. Fletcher , T. H. , Gillis , R. , Adams , J. , Hall , T. , Mayne , C. L. , Solum , M. S. , Pugmire , R. J. Characterization of macromolecular structure elements from a Green River oil shale , II. Characterization of pyrolysis products by 13C NMR , GC/MS , and FTIR. Energ. Fuel. , 2014 , 28(5) , 2959–2970.
http://dx.doi.org/10.1021/ef500095j

  9. Tong , J. H. , Liu , J. G. , Han , X. X. , Wang , S. , Jiang , X. M. Characterization of nitrogen-containing species in Huadian shale oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel , 2013 , 104 , 365–371.
http://dx.doi.org/10.1016/j.fuel.2012.09.042

10. Lédé , J. , Broust , F. , Ndiaye , F.-T. , Ferrer , M. Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel , 2007 , 86(12–13) , 1800–1810.
http://dx.doi.org/10.1016/j.fuel.2006.12.024

11. Li , M. W. , Cheng , D. S. , Pan , X. H. , Dou , L. R. , Hou , D. J. , Shi , Q. , Wen , Z. G. , Tang , Y. J. , Achal , S. , Milovic , M. , Tremblay , L. Characterization of petroleum acids using combined FT-IR , FT-ICR–MS and GC–MS: Implications for the origin of high acidity oils in the Muglad Basin , Sudan. Org. Geochem. , 2010 , 41(9) , 959–965.
http://dx.doi.org/10.1016/j.orggeochem.2010.03.006

12. Butler , E. , Devlin , G. , Meier , D. , McDonnell , K. Fluidised bed pyrolysis of lignocellulosic biomasses and comparison of bio-oil and micropyrolyser pyrolysate by GC/MS-FID. J. Anal. Appl. Pyrol. , 2013 , 103 , 96–101.
http://dx.doi.org/10.1016/j.jaap.2012.10.017

13. Geng , C. C. , Li , S. Y. , Ma , Y. , Yue , C. T. , He , J. L. , Shang , W. Z. Analysis and identification of oxygen compounds in Longkou shale oil and Shenmu coal tar. Oil Shale , 2012 , 29(4) , 322–333.
http://dx.doi.org/10.3176/oil.2012.4.03

14. Zheng , D. W. , Li , S. Y. , Ma , G. L. , Wang , H. Y. Autoclave pyrolysis experi­ments of Chinese Liushuhe oil shale to simulate in-situ underground thermal conversion. Oil Shale , 2012 , 29(2) , 103–114.
http://dx.doi.org/10.3176/oil.2012.2.02

15. Williams , P. T. , Nazzal , J. M. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale. J. Anal. Appl. Pyrol. , 1995 , 35(2) , 181–197.
http://dx.doi.org/10.1016/0165-2370(95)00908-9

16. De la Rosa , J. M. , Knicker , H. , López-Capel , E. , Manning , D. A. C. , González-Perez , J. A. , González-Vila , F. J. Direct detection of black carbon in soils by Py-GC/MS , carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Sci. Soc. Am. J. , 2008 , 72(1) , 258–267.
http://dx.doi.org/10.2136/sssaj2007.0031

17. Lu , Q. , Li , W. Z. , Zhang , D. , Zhu , X. F. Analytical pyrolysis–gas chromato­graphy/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA-15 catalysts. J. Anal. Appl. Pyrol. , 2009 , 84(2) , 131–138.
http://dx.doi.org/10.1016/j.jaap.2009.01.002

18. Wang , S. R. , Guo , X. J. , Liang , T. , Zhou , Y. , Luo , Z. Y. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technol. , 2012 , 104 , 722–728.
http://dx.doi.org/10.1016/j.biortech.2011.10.078

19. Ross , A. B. , Anastasakis , K. , Kubacki , M. , Jones , J. M. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J. Anal. Appl. Pyrol. , 2009 , 85(1–2) , 3–10.
http://dx.doi.org/10.1016/j.jaap.2008.11.004

20. Strezov , V. , Lucas , J. A. , Evans , T. J. , Strezov , L. Effect of heating rate on the thermal properties and devolatilisation of coal. J. Therm. Anal. Calorim. , 2004 , 78(2) , 385–397.
http://dx.doi.org/10.1023/B:JTAN.0000046105.01273.61

21. Yu , J. Study and Modelling on the Interaction of Volatile Flame , CO Flame and Char Particle Combustion , PhD dissertation. Shanghai JiaoTong University , 2003.

22. Niksa , S. , Lau , C.-W. Global rates of devolatilization for various coal types. Combust. Flame , 1993 , 94(3) , 293–307.
http://dx.doi.org/10.1016/0010-2180(93)90075-E

23. Yanik , J. , Yüksel , M. , Sağlam , M. , Olukçu , N. , Bartle , K. , Frere , B. Charac­teriza­tion of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel , 1995 , 74(1) , 46–50.
http://dx.doi.org/10.1016/0016-2361(94)P4329-Z

24. Wang , H. , Jiang , X. M. , Liu , H. , Wu , S. H. Fast pyrolysis comparison of coal–water slurry with its parent coal in Curie-point pyrolyser. Energ. Convers. Manage. , 2009 , 50(8) , 1976–1980.
http://dx.doi.org/10.1016/j.enconman.2009.04.012

25. Xu , W. C. , Tomita , A. Effect of temperature on the flash pyrolysis of various coals. Fuel , 1987 , 66(5) , 632–636.
http://dx.doi.org/10.1016/0016-2361(87)90271-7

26. Hempfling , R. , Schulten , H.-R. Chemical characterization of the organic matter in forest soils by Curie point pyrolysis-GC/MS and pyrolysis-field ionization mass spectrometry. Org. Geochem. , 1990 , 15(2) , 131–145.
http://dx.doi.org/10.1016/0146-6380(90)90078-E

27. Deniau , I. , Devol-Brown , I. , Derenne , S. , Behar , F. , Largeau , C. Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay) , Bure (Callovo–Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories. Sci. Total Environ. , 2008 , 389(2–3) , 475–485.
http://dx.doi.org/10.1016/j.scitotenv.2007.09.013

28. Pouwels , A. D. , Eijkel , G. B. , Boon , J. J. Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. J. Anal. Appl. Pyrol. , 1989 , 14(4) , 237–280.
http://dx.doi.org/10.1016/0165-2370(89)80003-8

29. Liu , J. L. , Jiang , J. C. , Huang , H. T. Selective pyrolysis behaviors of willow catalyzed via phosphoric acid. Adv. Mat. Res. , 2013 , 724–725 , 413–418.
http://dx.doi.org/10.4028/www.scientific.net/AMR.749.413

30. Tong , J. H. , Han , X. X. , Wang , S. , Jiang , X. M. Evaluation of structural charac­teristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR , XPS , FT-IR , and XRD). Energ. Fuel. , 2011 , 25(9) , 4006–4013.
http://dx.doi.org/10.1021/ef200738p

31. Cady , W. E. , Seelig , H. S. Composition of shale oil. Ind. Eng. Chem. , 1952 , 44(11) , 2636–2641.
http://dx.doi.org/10.1021/ie50515a044

32. Yürüm , Y. , Levy , M. Analysis of a retort oil from an Israeli shale by gas chromatography-mass spectrometry-selected ion monitoring. Fuel , 1985 , 64(1) , 102–107.
http://dx.doi.org/10.1016/0016-2361(85)90287-X

33. Rebick , C. Pyrolysis of heavy hydrocarbons. In: Pyrolysis: Theory and Industrial Practice (Albright , L. F. , Crynes , B. L. , Corcoran , W. H. , eds.). Academic Press , 1983 , 69–87.

34. Fookes , C. J. R. , Duffy , G. J. , Udaja , P. , Chensee , M. D. Mechanisms of thermal alteration of shale oils. Fuel , 1990 , 69(9) , 1142–1144.
http://dx.doi.org/10.1016/0016-2361(90)90071-W

35. Hatcher , P. G. , Clifford , D. J. Flash pyrolysis and in situ methylation of humic acids from soil. Org. Geochem. , 1994 , 21(10–11) , 1081–1092.
http://dx.doi.org/10.1016/0146-6380(94)90071-X

36. Van Meter , R. A. , Bailey , C. W. , Smith , J. R. , Moore , R. T. , Allbright , C. S. , Jacobson , I. A. , Hylton , V. M. , Ball , J. S. Oxygen and nitrogen compounds in shale-oil naphtha. Anal. Chem. , 1952 , 24(11) , 1758–1763.
http://dx.doi.org/10.1021/ac60071a015

37. Rose , H. R. , Smith , D. R. , Vassallo , A. M. An investigation of thermal trans­formations of the products of oil shale demineralization using infrared emission spectroscopy. Energ. Fuel. , 1993 , 7(2) , 319–325.
http://dx.doi.org/10.1021/ef00038a024

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December