headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 32, Issue 4
Vol. 32, Issue 3
Vol. 32, Issue 2
Vol. 32, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

INVESTIGATION OF THE GAS FLOW DISTRIBUTION AND PRESSURE DROP IN XINJIANG OIL SHALE RETORT; pp. 172–185

(Full article in PDF format) doi: 10.3176/oil.2015.2.07


Authors

LUWEI PAN, FANGQIN DAI, JIANNING HUANG, SHUANG LIU, FAHUI ZHANG

Abstract

Xinjiang oil shale retort is a new type of retorting device developed for exploiting Xinjiang oil shale according to the rock characteristics. Knowledge of the gas flow distribution in the retorting zone and the pressure drops across the retort is important to increase production rate and achieve the stable operation of the retort. In this paper, the structure and working principle of Xinjiang oil shale retort are introduced. The gas flow distribu­tion in the retorting zone and the pressure drops across the retort system were investigated through a three-dimensional cold model of the retort. It was found that the distribution of vertical velocities of gas flow became more uniform with the increase of gas flow rate and bed depth. The optimal cold recycled gas amount is about 10% of the amount of hot recycled gas. In general, the results show that the gas flow distribution in the retorting zone is maldistribution, and the gas inlet structure should be modified. The empirical constants of the Ergun equation for the retort were determined, and the pressure drops across the retort were predicted and verified.

Keywords

oil shale, retort, Xinjiang, gas flow distribution, pressure drop.

References

  1. Dyni , J. R. Geology and resources of some world oil-shale deposits. Oil Shale , 2003 , 20(3) , 193–252.

  2. Hepbasli , A. Oil shale as an alternative energy source. Energ. Source. , 2004 , 26(2) , 107–118.
http://dx.doi.org/10.1080/00908310490258489

  3. Altun , N. E. , Hicyilmaz , C. , Hwang , J.-Y. , Suat Bağci , A. , Kök , M. V. Oil shales in the world and Turkey; reserves , current situation and future prospects: a review. Oil Shale , 2006 , 23(3) , 211–227.

  4. Al-Harahsheh , A. , Al-Otoom , A. Y. , Shawabkeh , R. A. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil shale. Energy , 2005 , 30(15) , 2784–2795.

  5. Wang , S. , Jiang , X. M. , Han , X. X. , Tong , J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy , 2012 , 42(1) , 224–232.
http://dx.doi.org/10.1016/j.energy.2012.03.066

  6. Chen , S. B. , Zhu , Y. M. , Wang , H. Y. , Liu , H. L. , Wei , W. , Fang , J. H. Shale gas reservoir characterisation: a typical case in the southern Sichuan Basin of China. Energy , 2011 , 36(11) , 6609–6616.
http://dx.doi.org/10.1016/j.energy.2011.09.001

  7. Jiang , X. M. , Han , X. X. , Cui , Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy , 2007 , 5(32) , 772–777.
http://dx.doi.org/10.1016/j.energy.2006.05.001

  8. Bai , Y. L. Prospects for Development of Oil Shale Deposits in Southeastern Margin of Junggar Basin. Xinjiang Petroleum Geology , 2008 , 29(4) , 462–465 (in Chinese).

  9. Shinohara , K. , Golman , B. Air pressure drop across a particle moving bed in a three-dimensional cold model of a blast furnace. Adv. Powder Technol. , 2005 , 16(4) , 387–397.
http://dx.doi.org/10.1163/1568552054194258

10. Dai , F. Q. , Huang , S. S. , Li , S. H. , Liu , K. Study of a ceramic burner for shaftless stoves. Int. J. Min. Met. Mater. , 2009 , 16(2) , 149–153.
http://dx.doi.org/10.1016/S1674-4799(09)60025-X

11. Pan , L. W. , Dai , F. Q. , Tian , Y. Q. , Zhang , F. H. Experimental investigation of the sphericity of irregularly shaped oil shale particle groups. Adv. Powder Technol. , 2015 , 26(1) , 66–72.
http://dx.doi.org/10.1016/j.apt.2014.08.006

12. Geldart , D. Estimation of basic particle properties for use in fluid-particle process calculations. Powder Technol. , 1990 , 60(1) , 1–13.
http://dx.doi.org/10.1016/0032-5910(90)80099-K

13. Mayerhofer , M. , Govaerts , J. , Parmentier , N. , Jeanmart , H. , Helsen , L. Experi­mental investigation of pressure drop in packed beds of irregular shaped wood particles. Powder Technol. , 2011 , 205(1–3) , 30–35.
http://dx.doi.org/10.1016/j.powtec.2010.08.006

14. Xie , H. Y. , Shinohara , K. Modeling of solids flow in a blast furnace by the streamline method. Adv. Powder Technol. , 1999 , 10(4) , 405–415.
http://dx.doi.org/10.1163/156855299X00244

15. Sodre , J. R. , Parise , J. A. R. Fluid flow pressure drop through an annular bed of spheres with wall effects. Exp. Therm. Fluid Sci. , 1998 , 17(3) , 265–275.
http://dx.doi.org/10.1016/S0894-1777(97)10022-X

16. Heggs , P. J. , Ellis , D. I. , Ismail , M. S. The modelling of fluid-flow distribu­tions in annular packed beds. Gas Sep. Purif. , 1994 , 8(4) , 257–264.
http://dx.doi.org/10.1016/0950-4214(94)80006-5

17. Subagyo , Standish , N. , Brooks , G. A. A new model of velocity distribution of a single-phase fluid flowing in packed beds. Chem. Eng. Sci. , 1998 , 53(7) , 1375–1385.
http://dx.doi.org/10.1016/S0009-2509(97)00444-2

18. Wu , Q. C. Oil Shale Dry Distillation Technology. Liaoning Science and Technology Publishing House , Shenyang , 2012 (in Chinese).

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December