headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Nanostructured zinc oxide filler for modification of polymer-polymer composites: structure and tribological properties; pp. 82–87

(Full article in PDF format) doi: 10.3176/proc.2015.1S.03


Authors

Ivan Bochkov, Arvis Kokins, Remo Merijs Meri, Janis Zicans, Juozas Padgurskas, Andrius Zunda, Raimondas Kreivaitis

Abstract

Self-lubricating behaviour of materials is very demanded in industry. In this study we investigated the effect of anisometric nanostructured ZnO filler (tetrapod shaped particles with arm length of 70–100 nm and diameter of 10 nm) and ethylene-1-octene copolymer on structure and tribological properties of isotactic polypropylene (PP). It was observed that addition of EOC caused the increment of roughness as well as of the coefficient of friction (COF) of the investigated composites. Addition of ZnO, in its turn, caused decrement of the COF and improvement of surface quality at certain nanofiller contents.

Keywords

tribology, nanocomposite, polypropylene, ethylene-1-octene copolymer, zinc oxide.

References

  1. Akinci , A. Mechanical and structural properties of polypropylene composites filled with graphite flakes. Arch. Mater. Sci. Eng. , 2009 , 35(2) , 91–94.

  2. Yanga , H.-S. , Kima , H.-J. , Sonb , J. , Parkc , H.-J. , Leed , B.-J. , and Hwange , T.-S. Rice-husk flour filled poly­propylene composites; mechanical and morphological study. Compos. Struct. , 2004 , 63 , 305–312.
http://dx.doi.org/10.1016/S0263-8223(03)00179-X

  3. López Manchadoa , M. A. , Valentinib , L. , Biagiottib , J. , and Kennyb , J. M. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene com­posites prepared by melt processing. Carbon , 2005 , 43 , 1499–1505.
http://dx.doi.org/10.1016/j.carbon.2005.01.031

  4. Zhang , L. M. and Dai , G. C. Effect of interfacial treatment on the thermal properties of thermal conductive plastics. Express Polym. Lett. , 2007 , 1 , 608–615.
http://dx.doi.org/10.3144/expresspolymlett.2007.83

  5. Silvestre , C. , Cimmino , S. , Pezzuto , M. , Marra , A. , Ambrogi , V. , Dexpert-Ghys , J. et al. Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity. Polym. J. , 2013. 45 , 938–945.
http://dx.doi.org/10.1038/pj.2013.8

  6. Hong , J. , Park , D. W. , and Shim , S. E. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett. , 2010 , 11 , 347–356.
http://dx.doi.org/10.5714/CL.2010.11.4.347

  7. Ebadi-Dehaghani , H. and Nazempour. M. Thermal con­ductivity of nanoparticles filled polymers. In Smart Nano­particles Technology (Hashim , A. , ed.). INTECH , Shanghai , 2012.
http://dx.doi.org/10.5772/1969

  8. Altan , M. , Yildirim , H. , and Uysal , A. Tensile properties of polypropylene/metal oxide nano composites. J. Sci. Technol. , 2011 , 1 , 25–30. Online.

  9. Hironaka , S. , Komoto , T. , and Tanaka , K. Morphological study of the wear of crystalline polymers II: isotactic poly(propylene). Wear , 1983 , 87 , 85–92.
http://dx.doi.org/10.1016/0043-1648(83)90024-8

10. Chakraborty , H. , Sinha , A. , Mukherjee , N. , Ray , D. , and Chattopadhyay , P. P. A study on nanoindentation and tribological behavior of multifunctional ZnO/PMMA nanocomposite. Mater. Lett. , 2013 , 93 , 137–140.
http://dx.doi.org/10.1016/j.matlet.2012.11.075

11. Songa , H.-J. , Zhanga , Z.-Z. , Mena , X.-H. , and Luoa , Z.-Z. A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings. Wear , 2010 , 269 , 79–85.
http://dx.doi.org/10.1016/j.wear.2010.03.011

12. Lawrowski , Z. Polymers in the construction of serviceless sliding bearings. Arch. Mater. Sci. Eng. , 2007 , 7 , 139–150.

13. Quintelier , J. , Samyn , P. , De Doncker , L. , Vermeulen , J. , Tuzolana , T. , Cardon , L. et al. Self-lubricating and self-protecting properties of polymer composites for wear and friction applications. Polym. Compos. , 2009 , 30 , 932–940.
http://dx.doi.org/10.1002/pc.20637

14. Grabis , J. , Steins , I. , Rasmane , D. , and Heidemane , G. Nano­size NiO/YSZ powders produced by ICP technique. J. Eur. Ceram. Soc. , 1997. 17 , 1437–1442.
http://dx.doi.org/10.1016/S0955-2219(97)89405-8

15. Bagheri-Kazemabada , S. , Foxc , D. , Chenc , Y. , Gee­verd , L. M. , Khavandia , A. , Bagherie , R. et al. Morphol­ogy , rheology and mechanical properties of polypropylene/ethylene–octene copolymer/clay nano­composites: Effects of the compatibilizer. Compos. Sci. Technol. , 2012 , 72 , 1697–1704.
http://dx.doi.org/10.1016/j.compscitech.2012.06.007.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December