headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

On the effect of finite-time correlations on the turbulent mixing in smooth chaotic compressible velocity fields; pp. 1–7

(Full article in PDF format) doi: 10.3176/proc.2015.1.01


Authors

Siim Ainsaar, Jaan Kalda

Abstract

Most theoretical results about turbulent mixing have been obtained for ideal flows that are delta-correlated in time. As is often believed, those ideal flows are, with regard to mixing, very similar to real flows with a finite correlation time. However, recent results show that these two cases may differ considerably. In this article we study the effects of finite correlation time in a chaotic smooth statistically isotropic two-dimensional velocity field. As mixing is predominantly determined by the statistics of the stretching of material elements (e.g. lines “painted” onto a liquid), in this article we focus on the characteristics describing such stretching: finite-time Lyapunov exponents and the Lyapunov dimension. For these quantities, we derive analytical expressions as functions of the correlation time and the compressibility of the velocity field, and we investigate these expressions numerically. The results agree well with numerical results of other authors, and are useful for understanding several physical phenomena, e.g. patchiness of pollution spreading on an ocean and kinematic magnetic dynamos.

Keywords

turbulence, advection, finite-time Lyapunov exponent, Lyapunov dimension, finite correlation time, compressible flow.

References

  1. Falkovich , G. , Gawędzki , K. , and Vergassola , M. Particles and fields in fluid turbulence. Rev. Mod. Phys. , 2001 , 73 , 913–975.
http://dx.doi.org/10.1103/RevModPhys.73.913

  2. Sreenivasan , K. R. and Antonia , R. A. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. , 1997 , 29 , 435–472.
http://dx.doi.org/10.1146/annurev.fluid.29.1.435

  3. Warhaft , Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. , 2000 , 32 , 203–240.
http://dx.doi.org/10.1146/annurev.fluid.32.1.203

  4. Dimotakis , P. E. Turbulent mixing. Annu. Rev. Fluid Mech. , 2005 , 37 , 329–356.
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122015

  5. Shraiman , B. I. and Siggia , E. D. Scalar turbulence. Nature , 2000 , 405 , 639–646.
http://dx.doi.org/10.1038/35015000

  6. Toschi , F. and Bodenschatz , E. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. , 2009 , 41 , 375–404.
http://dx.doi.org/10.1146/annurev.fluid.010908.165210

  7. Grabowski , W. W. and Wang , L.-P. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. , 2013 , 45 , 293–324.
http://dx.doi.org/10.1146/annurev-fluid-011212-140750

  8. Brandenburg , A. and Subramanian , K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. , 2005 , 417 , 1–209.
http://dx.doi.org/10.1016/j.physrep.2005.06.005

  9. Gruzinov , A. , Cowley , S. , Espa , S. , and Sudan , R. Small-scale field dynamo. Phys. Rev. Lett. , 1996 , 77 , 4342–4345.
http://dx.doi.org/10.1103/PhysRevLett.77.4342

10. Kraichnan , R. H. Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. , 1994 , 72 , 1016–1019.
http://dx.doi.org/10.1103/PhysRevLett.72.1016

11. Boffetta , G. , Davoudi , J. , Eckhardt , B. , and Schumacher , J. Lagrangian tracers on a surface flow: the role of time correlations. Phys. Rev. Lett. , 2004 , 93 , 134501.
http://dx.doi.org/10.1103/PhysRevLett.93.134501

12. Larkin , J. and Goldburg , W. I. Decorrelating a compressible turbulent flow: an experiment. Phys. Rev. E , 2010 , 82 , 016301.
http://dx.doi.org/10.1103/PhysRevE.82.016301

13. Gustavsson , K. and Mehlig , B. Lyapunov exponents for particles advected in compressible random velocity fields at small and large Kubo numbers. J. Stat. Phys. , 2013 , 153 , 813–827.
http://dx.doi.org/10.1007/s10955-013-0848-z

14. Le Jan , Y. On isotropic brownian motions. Z. Wahrscheinlichkeitstheor. Verwandte Geb. , 1985 , 70 , 609.
http://dx.doi.org/10.1007/BF00531870

15. Larkin , J. , Bandi , M. , Pumir , A. , and Goldburg , W. Power-law distributions of particle concentration in free-surface flows. Phys. Rev. E , 2009 , 80 , 066301.
http://dx.doi.org/10.1103/PhysRevE.80.066301

16. Cressman , J. R. , Davoudi , J. , Goldburg , W. I. , and Schumacher , J. Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys. , 2004 , 6 , 53.
http://dx.doi.org/10.1088/1367-2630/6/1/053

17. Bec , J. , Gawędzki , K. , and Horvai , P. Multifractal clustering in compressible flows. Phys. Rev. Lett. , 2004 , 92 , 224501.
http://dx.doi.org/10.1103/PhysRevLett.92.224501

18. Kalda , J. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett. , 2000 , 84 , 471–474.
http://dx.doi.org/10.1103/PhysRevLett.84.471

19. Kalda , J. Sticky particles in compressible flows: aggregation and Richardson’s law. Phys. Rev. Lett. , 2007 , 98 , 064501.
http://dx.doi.org/10.1103/PhysRevLett.98.064501

20. Kalda , J. and Morozenko , A. Origin of the small-scale anisotropy of the passive scalar fluctuations. In Advances in Turbulence: Proceedings of the 12th EUROMECH European Turbulence Conference , September 7–10 , 2009 , Marburg , Germany. Springer Proceedings in Physics , 2009 , 541–544.

21. Prudnikov , A. P. , Brychkov , Yu. A. , and Marichev , O. I. Integrals and Series: Elementary Functions. Nauka , Moskva , 1981 (in Russian).

22. Kalda , J. , Soomere , T. , and Giudici , A. On the finite-time compressibility of the surface currents in the Gulf of Finland , the Baltic Sea. J. Mar. Syst. , 2014 , 129 , 56–65.
http://dx.doi.org/10.1016/j.jmarsys.2012.08.010

23. Kerstein , A. R. Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. , 1991 , 231 , 361–394.
http://dx.doi.org/10.1017/S0022112091003439

24. Kerstein , A. R. One-dimensional turbulence: model formulation and application to homogeneous turbulence , shear flows , and buoyant stratified flows. J. Fluid Mech. , 1999 , 392 , 277–334.
http://dx.doi.org/10.1017/S0022112099005376

25. Kalda , J. and Morozenko , A. Turbulent mixing: the roots of intermittency. New J. Phys. , 2008 , 10 , 093003.
http://dx.doi.org/10.1088/1367-2630/10/9/093003

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December