headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

On chaos control in hierarchical multi-agent systems; pp. 17–21

(Full article in PDF format) doi: 10.3176/proc.2015.1.03


Authors

Rommi Källo, Martin Eerme, Vello Reedik

Abstract

The paper is focused on the problems of chaos control in multi-agent hierarchical systems similar to the environment of the realization of automated factory projects. The research is based on a unique database of empirical studies of human faults and mistakes at the design and commissioning of factory automation systems. It is shown that for primary chaos control it is appropriate to use Design Structure Matrix (DSM) technology tools, enabling to describe synergistic relations between all teams’ members on the basis of the frequency and amount of information interchange. For further chaos control an effective system is proposed to track and hinder different human shortcomings spreading in the hierarchical teamwork system. As a basis for it an advanced simulation technique, discrete event modelling, is used. The proposed methodology of suppressing the influence of human shortcomings allows us to increase the synergy in teamwork and to substantially reduce the losses of resources at starting up new facto.

Keywords

chaos control, factory automation, control systems design, control systems commissioning, teamwork management, synergy deployment, Design Structure Matrix, discrete event modelling.

References

1. Seilonen , I. , Pirtioja , I. , and Koskinen , K. Extending pro­cess automation systems with multi-agent techniques. Eng. Appl. Artif. Intel. , 2009 , 22 , 1056–1067.
http://dx.doi.org/10.1016/j.engappai.2008.10.007

  2. Samad , T. , McLaughlin , P. , and Lu , J. System architecture for process automation: review and trends. J. Proc. Contr. , 2007 , 17 , 191–201.
http://dx.doi.org/10.1016/j.jprocont.2006.10.010

  3. Jämsä-Jounela , S.-L. Future trends in process automation. Annu. Rev. Control , 2007 , 31 , 211–220.
http://dx.doi.org/10.1016/j.arcontrol.2007.08.003

  4. Kaljas , F. , Källo , R. , and Reedik , V. Human aspects at design of mechatronic systems. In Proceedings of the 9th Mechatronics Forum International Conference , Ankara , 30 Aug – 1 Sept 2004. Atilim University Publications , 2004 , 147–157.

  5. Eppinger , S. D. A planning method for integration of large-scale engineering systems. In Proceedings of the International Conference on Engineering Design ICED’1997. Tampere , 1997 , 19–21.

  6. Tähemaa , T. and Reedik , V. Positive and negative synergy at mechatronic systems design. In Proceedings of International Conference Nord Design 2000. DTU Publications , Copenhagen , Denmark , 2000 , 35–44.

  7. Hindreus , T. and Reedik , V. Synergy-based approach to quality assurance. Estonian J. Eng. , 2009 , 15 , 87–98.
http://dx.doi.org/10.3176/eng.2009.2.02

  8. Källo , R. , Eerme , M. , and Reedik , V. Ways of increasing synergy in automated factory design and commission­ing teamwork. J. Mater. Sci. Eng. B , 2013 , 3(9) , 597–604.

  9. Haken , H. Synergetics. Springer-Verlag , Berlin , 2004.
http://dx.doi.org/10.1007/978-3-662-10184-1

10. Hindreus , T. , Kaljas , F. , Källo , R. , Martin , A. Tähe­maa , T. , and Reedik , V. On synergy deployment in engineering design. J. Mater. Sci. Eng. B , 2012 , 2(6) , 408–413.

11. Ivancevic , V. G. and Ivancevic , T. T. Complex Non­linearity: Chaos , Phase Transitions , Topology Change and Path Integrals. Springer-Verlag , Berlin , 2008.

12. Mikhailov , A. S. and Calenbuhr , V. From Cells to Societies: Models of Complex Coherent Action. Springer-Verlag , Berlin , 2002.
http://dx.doi.org/10.1007/978-3-662-05062-0

13. Eppinger , S. D. and Browning , T. Design Structure Matrix Methods and Applications. Massachusetts Institute of Technology , Cambridge , MA , USA , 2012.

14. Cho , S. H. and Eppinger , S. D. Product development process modelling using advanced simulation. In Proceedings of ASME Design Engineering Technical Conference DETC’01. Pittsburgh , Pennsylvania , USA , 2001 , 1–10.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December