headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Influence of plant extracts on the growth of oral pathogens Streptococcus mutans and Candida albicans in vitro; pp. 62–67

(Full article in PDF format) doi: 10.3176/proc.2015.1.08


Authors

Guntra Krumina, Linda Ratkevicha, Vizma Nikolajeva, Anna Babarikina, Dmitry Babarykin

Abstract

The objective of this study was to investigative the effects of ten plant extracts, six juices, and propolis and their combinations on the in vitro growth of oral pathogens Streptococcus mutans and Candida albicans. Agar-well diffusion and broth dilution methods were used. Triple and quadruple combinations were tested with the most active extracts. All of the tested 70% ethanolic extracts inhibited the growth of S. mutans and C. albicans. Cloves, cinnamon, propolis, lavender, and sage were the most active inhibitors. Apple, black chokeberry, black elderberry, cranberry, Japanese quince, and lemon juice demonstrated little activity. Mixed in double 1 : 1 combinations, 8 extract combinations expressed synergistic action and 11 combinations expressed antagonistic action to the inhibition of the growth of C. albicans. Chamomile, liquorice, marigold, and lavender were involved both in synergistic and antagonistic interactions depending on the second component of the mixture. Propolis, cinnamon, and cloves were involved only in particular synergistic interactions, while sweet flag, dog rose, and oregano related only to some antagonistic interactions. The most active quadruple combination consisted of cloves, cinnamon, propolis, and lavender. Moreover, it demonstrated activity and synergistic action against both microorganisms. Propolis and all the studied plant extracts may be of great interest for inhibiting the growth of oral pathogens S. mutans and C. albicans.

Keywords

microbiology, plant extract, antimicrobial activity, synergistic action, Candida albicans, Streptococcus mutans.

References

  1. Toyonaga , A. , Okamatsu , H. , Sasaki , K. , Kimura , H. , Saito , T. , Shimizu , S. , et al. Epidemiological study on food intake and Helicobacter pylori infection. Kurume Med. J. , 2000 , 47 , 25–30.
http://dx.doi.org/10.2739/kurumemedj.47.25

  2. Tinanoff , N. and Palmer , C. A. Dietary determinants of dental caries and dietary recommendations for pre­school children. J. Public Health Dent. , 2000 , 60 , 197–206.
http://dx.doi.org/10.1111/j.1752-7325.2000.tb03328.x

  3. Jin , Y. , Samaranayake , L. P. , Samaranayake , Y. , and Yip , H. K. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch. Oral Biol. , 2004 , 49 , 789–798.
http://dx.doi.org/10.1016/j.archoralbio.2004.04.011

  4. Joshipura , K. , Ritchie , C. , and Douglass , C. Strength of evidence linking oral conditions and systemic disease. Compend. Contin. Educ. Dent. Suppl. , 2000 , 30 , 12–23.

  5. Loesche , W. J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. , 1986 , 50 , 353–380.

  6. Featherstone , J. D. The continuum of dental caries – evidence for a dynamic disease process. J. Dent. Res. , 2004 , 83 , C39–C42.
http://dx.doi.org/10.1177/154405910408301S08

  7. Deng , D. M. , ten Cate , J. M. , and Crielaard , W. The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease. Eur. J. Oral Sci. , 2007 , 115 , 363–370.
http://dx.doi.org/10.1111/j.1600-0722.2007.00477.x

  8. Petersen , P. E. , Bourgeois , D. , Ogawa , H. , Estupinan-Day , S. , and Ndiaye , C. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. , 2005 , 83 , 661–669.

  9. Arendorf , T. M. and Walker , D. M. The prevalence and intra-oral distribution of Candida albicans in man. Arch. Oral Biol. , 1980 , 25 , 110.
http://dx.doi.org/10.1016/0003-9969(80)90147-8

10. Samonis , G. and Dassiou , M. Antibiotics affecting gastro­intestinal colonization of mice by yeasts. Chemo­therapy , 1994 , 6 , 50–52.

11. Netea , M. G. and Marodi , L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol. , 2010 , 31 , 346–353.
http://dx.doi.org/10.1016/j.it.2010.06.007

12. LaFleur , M. D. , Kumamoto , C. A. , and Lewis , K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. , 2006 , 50 , 38393846.
http://dx.doi.org/10.1128/AAC.00684-06

13. Wisplinghoff , H. , Bischoff , T. , Tallent , S. M. , Seifert , H. , Wenzel , R. P. , and Edmond , M. B. Nosocomial blood­stream infections in US hospitals: analysis of 24 ,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. , 2004 , 39 , 309–317.
http://dx.doi.org/10.1086/421946

14. Van der Meer , J. W. , van de Veerdonk , F. L. , Joos­ten , L. A. , Kullberg , B. J. , and Netea , M. G. Severe Candida spp. infections: new insights into natural immunity. Int. J. Antimicrob. Ag. , 2010 , 36 , S58–S62.
http://dx.doi.org/10.1016/j.ijantimicag.2010.11.013

15. Koc , A. N. , Silici , S. , Kasap , F. , Hormet-Oz , H. T. , Mavus-Buldu , H. , and Ercal , B. D. Antifungal activity of the honeybee products against Candida spp. and Trichosporon spp. J. Med. Food , 2011 , 14 , 128–134.
http://dx.doi.org/10.1089/jmf.2009.0296

16. Hassawi , D. and Kharma , A. Antimicrobial activity of some medicinal plants against Candida albicans. J. Biol. Sci. , 2006 , 6 , 109–114.
http://dx.doi.org/10.3923/jbs.2006.109.114

17. Dalirsani , Z. , Adibpour , M. , Aghazadeh , M. , Amirchaghmaghi , M. , Falaki , F. , Mozafari , P. M. , et al. In vitro comparison of inhibitory activity of 10 plant extracts against Candida albicans. Aust. J. Basic Appl. Sci. , 2011 , 5 , 930–935.

18. Taguchi , Y. , Ishibashi , H. , Takizawa , T. , Inoue , S. , Yamaguchi , H. , and Abe , S. Protection of oral or intestinal candidiasis in mice by oral or intragastric administration of herbal food , clove (Syzygium aromaticum). Nihon Ishinkin Gakkai Zasshi , 2005 , 46 , 27–33.
http://dx.doi.org/10.3314/jjmm.46.27

19. Quale , J. M. , Landman , D. , Zaman , M. M. , Burney , S. , and Sathe , S. S. In vitro activity of Cinnamonum zeylanicum against azole resistant and sensitive Candida species and a pilot study of cinnamon for oral candidiasis. Am. J. Chin. Med. , 1996 , 24 , 103–109.
http://dx.doi.org/10.1142/S0192415X96000153

20. Rahim , Z. H. A. and Khan , H. B. S. G. Comparative studies on the effect of crude aqueous (CA) and solvent (CM) extracts of clove on the cariogenic properties of Streptococcus mutans. Journal of Oral Science , 2006 , 48 , 117–123.
http://dx.doi.org/10.2334/josnusd.48.117

21. Groppo , F. C. , Ramacciato , J. C. , Motta , R. H. , Ferra­resi , P. M. , and Sartoratto , A. Antimicrobial activity of garlic against oral streptococci. Int. J. Dent. Hyg. , 2007 , 5 , 109–115.
http://dx.doi.org/10.1111/j.1601-5037.2007.00230.x

22. Jain , E. , Pandey , R. K. , and Khanna , R. Liquorice root extracts as potent cariostatic agents in pediatric practice. J. Indian Soc. Pedod. Prev. Dent. , 2013 , 31 , 146–152.
http://dx.doi.org/10.4103/0970-4388.117964

23. Karmegam , N. , Karuppusamy , S. , Prakash , M. , Jaya­kumar , M. , and Rajasekar , K. Antibacterial potency and synergistic effect of certain plant extracts against food-borne diarrheagenic bacteria. International Journal of Biomedical and Pharmaceutical Sciences , 2008 , 2 , 88–93.

24. Qaiyumi , S. Macro- and microdilution methods of anti­microbial susceptibility testing. In Antimicrobial Susceptibility Testing Protocols (Schwalbe , R. , Steele-Moore , L. , and Goodwin , A. C. , eds). CRC Press , Boca Raton , London , New York , 2007 , 75–79.
http://dx.doi.org/10.1201/9781420014495.ch4

25. Chitra , W. , Calderon , P. , and Gagnon , D. Evaluation of selected medicinal plants extracted in different ethanol concentrations for antibacterial activity against human pathogens. Journal of Medicinally Active Plants , 2012 , 1 , 60–68.

26. Malini , M. , Abirami , G. , Hemalatha , V. , and Annadu­rai , G. Antimicrobial activity of ethanolic and aqueous extracts of medicinal plants against waste water pathogens. International Journal of Research in Pure and Applied Microbiology , 2013 , 3 , 40–42.

27. Krisch , J. , Galgóczy , L. , Tölgyesi , M. , Papp , T. , and Vágvölgyi , C. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biologica Szegediensis , 2008 , 52 , 267–270.

28. Low Dog , T. Smart talk on supplements and botanicals: herbal teas versus tinctures; standardized extracts; green tea. Alternat. Complement. Ther. , 2009 , 15 , 101–102.
http://dx.doi.org/10.1089/act.2009.15309

29. Cowan , M. M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. , 1999 , 12 , 564–582.

30. Koo , H. , Gomes , B. P. , Rosalen , P. L. , Ambrosano , G. M. , Park , Y. K. , and Cury , J. A. In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch. Oral Biol. , 2000 , 45 , 141–148.
http://dx.doi.org/10.1016/S0003-9969(99)00117-X

31. Al-Duboni , G. , Osman , M. T. , and Al-Naggar , R. Antimicrobial activity of aqueous extracts of cinnamon and ginger on two oral pathogens causing dental caries. Research Journal of Pharmaceutical , Biological and Chemical Sciences , 2013 , 4 , 957–965.

32. Tsai , T. H. , Tsai , T. H. , Chien , Y. C. , Lee , C. W. , and Tsai , P. J. In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: a comparative study of green tea versus different herbs. Food Chem. , 2008 , 110 , 859–864.
http://dx.doi.org/10.1016/j.foodchem.2008.02.085

33. Cavanagh , H. M. and Wilkinson , J. M. Biological activities of lavender essential oil. Phytother. Res. , 2002 , 16 , 301–308.
http://dx.doi.org/10.1002/ptr.1103

34. Lis-Balchin , M. T. Lavender. In Handbook of Herbs and Spices. Vol. 2 (Peter , K. V , ed.). Woodhead Publish­ing , Abington , 2004 , 179–195.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December