ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Traces of explosive volcanic eruptions in the Upper Ordovician of the Siberian Platform; pp. 244–250
PDF | doi: 10.3176/earth.2014.26

Authors
Warren D. Huff, Andrei V. Dronov, Bryan Sell, Aleksandr V. Kanygin, Taras V. Gonta
Abstract

Ordovician K-bentonite beds have a long history of investigation all around the world. They have been reported from Gondwana, the Argentine Precordillera, the Yangtze Platform, Laurentia, Baltica, and numerous terrains between Gondwana and Baltica, which now constitute a part of Europe. In recent years several K-bentonite beds have also been discovered in the Upper Ordovician of the Siberian Platform. This discovery is significant not only for their value in local and regional chronostratigraphic correlation but also for global geochronology, paleogeography, paleotectonic and paleoclimatic reconstructions. All in all, eight individual K-bentonite beds have been identified in the Baksian, Dolborian and Burian regional stages, which correspond roughly to the Upper Sandbian–Katian Global Stages. Zircon crystals from the uppermost K-bentonite bed within the Baksian regional stage provide a 206Pb/238U age of 450.58 ± 0.27 Ma. We will present preliminary results of the study of the three lowermost beds from the Baksian Regional Stage and suggest that the Taconic–Enisej (also spelled Yenisei or Yenisey) volcanic arc was continuous along the western margin of Siberia.

References

Altaner, S. P. & Bethke, C. M. 1989. Interlayer order in illite/smectite. American Mineralogist, 73, 766–774.

Altaner, S. P., Hower, J., Whitney, G. & Aronson, J. L. 1984. Model for K-bentonite formation: evidence from zoned K-bentonites in the disturbed belt, Montana. Geology, 12, 412–415.
http://dx.doi.org/10.1130/0091-7613(1984)12<412:MFKFEF>2.0.CO;2

Anwiller, D. N. 1993. Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf Coast Paleocene–Eocene. Journal of Sedimentary Petrology, 63, 501–512.

Barrenechea, J. E., Rodas, M., Frey, M., Alonso-Azcarate, J. & Mas, J. R. 2000. Chlorite, corrensite, and chlorite-mica in Late Jurassic fluvio-lacustrine sediments of the Cameros Basin of Northeastern Spain. Clays and Clay Minerals, 48, 256–265.
http://dx.doi.org/10.1346/CCMN.2000.0480212

Batchelor, R. A. & Weir, J. A. 1988. Metabentonite geo­chemistry: magmatic cycles and graptolite extinctions at Dob’s Linn, southern Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79, 19–41.
http://dx.doi.org/10.1017/S0263593300014085

Bergström, S. M., Chen X., Gutiérrez-Marco, J. C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major series and stages and to δ13C chemostratigraphy. Lethaia, 42, 97–107.
http://dx.doi.org/10.1111/j.1502-3931.2008.00136.x

Bethke, C. M., Vergo, N. & Altaner, S. P. 1986. Pathways of smectite illitization. Clays and Clay Minerals, 34, 125–135.
http://dx.doi.org/10.1346/CCMN.1986.0340203

Brusewitz, A. M. 1988. Asymmetric zonation of a thick Ordovician K-bentonite bed at Kinnekulle, Sweden. Clays and Clay Minerals, 36, 349–353.
http://dx.doi.org/10.1346/CCMN.1988.0360409

Cocks, L. R. M. & Torsvik, T. H. 2007. Siberia, the wandering northern terrane, and its changing geography through the Paleozoic. Earth-Science Reviews, 82, 29–74.
http://dx.doi.org/10.1016/j.earscirev.2007.02.001

Dergunov, A. B. 1989. Kaledonidy Tsentral¢noj Azii [The Caledonides of the Central Asia]. Nedra Publishing House, Moscow, 192 pp. [in Russian].

Dobretsov, N. L. 2003. Evolution of structures of the Urals, Kazakhstan, Tien Shan and Altai-Sayan Region within the Ural-Mongolian Fold Belt. Russian Geology and Geophysics, 44, 5–27.

Dronov, A. V. 2013. Late Ordovician cooling event: evidence from the Siberian Craton. Palaeogeography, Palaeo­climatology, Palaeoecology, 389, 87–95.
http://dx.doi.org/10.1016/j.palaeo.2013.05.032

Dronov, A. V., Kanygin, A. V., Timokhin, A. V., Tolmacheva, T. Yu. & Gonta, T. V. 2009. Correlation of eustatic and biotic events in the Ordovician paleobasins of the Siberian and Russian platforms. Paleontological Journal, 43, 1477–1497.
http://dx.doi.org/10.1134/S0031030109110124

Essene, E. J. & Peacor, D. R. 1995. Clay mineral thermometry – a critical review. Clays and Clay Minerals, 43, 540–553.
http://dx.doi.org/10.1346/CCMN.1995.0430504

Freed, R. L. & Peacor, D. R. 1989. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Minerals, 24, 171–180.
http://dx.doi.org/10.1180/claymin.1989.024.2.05

Hoffman, J. & Hower, J. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, U.S.A. In Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., eds), Society of Economic Paleontologists and Mineralogists, Special Publication, 26, 55–79.

Huang, W.-L., Longo, J. M. & Pevear, D. R. 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162–177.
http://dx.doi.org/10.1346/CCMN.1993.0410205

Huff, W. D., Anderson, T. B., Rundle, C. C. & Odin, G. S. 1991. Chemostratigraphy, K–Ar ages and illitization of Silurian K-bentonites from the Central Belt of the Southern Uplands–Down-Longford Terrane, British Isles. Journal of the Geological Society of London, 148, Part (5), 861–868.

Huff, W. D., Bergström, S. M., Kolata, D. R., Cingolani, C. & Astini, R. A. 1998. Ordovician K-bentonites in the Argentine precordillera: relations to Gondwana margin evolution. In The Proto-Andean Margin of Gondwana (Pankhurst, R. J. & Rapela, C. W., eds), Geological Society of London Special Publication, 142, 107–126.

Huff, W. D., Bergström, S. M. & Kolata, D. R. 2000. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine. Journal of the Geological Society of London, 157, 493–504.
http://dx.doi.org/10.1144/jgs.157.2.493

Huff, W., Bergström, S. M. & Kolata, D. R. 2010. Ordovician explosive volcanism. In The Ordovician Earth System (Finney, S. C. & Berry, W. B. N., eds), Geological Society of America Special Paper, 466, 13–28.
http://dx.doi.org/10.1130/2010.2466(02)

Kanygin, A. V., Yadrenkina, A. G., Timokhin, A. V., Moskalenko, T. A. & Sychev, O. V. 2007. Stratigrafiya neftegazonosnykh bassejnov Sibiri. Ordovik Sibirskoj platformy [Stratigraphy of the Oil- and Gas-Bearing Basins of Siberia. The Ordovician of the Siberian Platform]. GEO, Novosibirsk, Russia, 269 pp. [in Russian].

Kanygin, A, Dronov, A., Timokhin, A. & Gonta, T. 2010. Depositional sequences and palaeoceanographic change in the Ordovician of the Siberian craton. Palaeo­geography, Palaeoclimatology, Palaeoecology, 296, 285–294.
http://dx.doi.org/10.1016/j.palaeo.2010.02.014

Kiipli, E., Kiipli, T., Kallaste, T. & Siir, S. 2012. Al2O3/TiO2 ratio of the clay fraction of Late Ordovician–Silurian carbonate rocks as an indicator of paleoclimate of the Fennoscandian Shield. Palaeogeography, Palaeo­climatology, Palaeoecology, 365366, 312–320.
http://dx.doi.org/10.1016/j.palaeo.2012.10.001

Krekeler, M. P. S. & Huff, W. D. 1993. Occurrence of corrensite and ordered (R3) illite/smectite (I/S) in a VLGM Middle Ordovician K-bentonite from the Hamburg Klippe, central Pennsylvania. Geological Society of America Abstracts with Programs, 25, 30.

Markov, E. P. 1970. Ordovik i rannij Silur yugo-zapada Tungusskoj sineklizy [Ordovician and Early Silurian of the Southwest of Tungus Sineclise]. Nedra Publishing House, Leningrad, 144 pp. [in Russian].

Moore, D. M. & Reynolds, R. C., Jr. 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 378 pp.

Pollastro, R. M. 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119–133.
http://dx.doi.org/10.1346/CCMN.1993.0410202

Ramos, E., Navidad, M., Marzo, V. & Bolatt, N. 2003. Middle Ordovician K-bentonite beds in the Murzug Basin (Central Libya). In Ordovician from the Andes (Albanesi, G. L., Beresi, M. S. & Peralta, S. H., eds), INSUGEO, Serie Correlación Geológica, 17, 203–207.

Rateyev, M. A. & Gradusov, B. P. 1970. A structural series of mixed-layer formations from the Ordovician–Silurian metabentonites of the Baltic area. Doklady Akademii Nauk SSSR, 194, 180–183.

Reynolds, R. C. J. 1985. NEWMOD: A computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. R. C. Reynolds, 8 Brook Rd., Hannover, NH, 24.

Reynolds, R. C., Jr. & Hower, J. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays and Clay Minerals, 18, 25–36.
http://dx.doi.org/10.1346/CCMN.1970.0180104

Sachsenhofer, R. F., Rantitsch, G., Hasenhüttl, C., Russegger, B. & Jelen, B. 1998. Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Minerals, 33, 523–537.

Sengör, A. M. C., Natal¢in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 299–307.
http://dx.doi.org/10.1038/364299a0

Su, W. B., He, L. Q., Li, Q. G., Wang, Y. B., Gong, S. Y., Zhou, H. Y., Liu, X. M., Li, Z. M. & Huang, S. J. 2003. K-bentonite beds near the Ordovician–Silurian boundary on the Yangtze Platform, South China: preliminary study of the stratigraphic and tectonomagmatic significance. In Ordovician from the Andes (Albanesi, G. L., Beresi, M. S. & Peralta, S. H., eds), INSUGEO, Serie Correlación Geológica, 17, 209–214.

Velde, B. & Espitalié, J. 1989. Comparison of kerogen maturation and illite/smectite composition in diagenesis. Journal of Petroleum Geology, 12, 103–110.
http://dx.doi.org/10.1111/j.1747-5457.1989.tb00223.x

Back to Issue