ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
A swollen crinoid pluricolumnal from the Upper Ordovician of northern Kentucky, USA: the oldest record of an amorphous paleopathologic response in Crinoidea?; pp. 317–322
PDF | doi: 10.3176/earth.2014.37

Authors
James R. Thomka, Thomas J. Malgieri, Carlton E. Brett
Abstract

Swollen or otherwise malformed crinoid remains are relatively common in the Phanerozoic. However, published reports typically describe swellings associated with a discrete pit, boring, embedment structure or encruster, and, moreover, are overwhelmingly from Silurian or younger strata. Here, the rare occurrence of an amorphously swollen crinoid pluricolumnal is described from the Upper Ordovician (Katian) Grant Lake Formation of north-central Kentucky, USA. This represents one of the oldest examples of crinoid malformation potentially resulting from interaction with a parasite or epibiont, one of the oldest examples of swelling in a crinoid column, and likely represents the oldest record of amorphous swelling. The pluricolumnal is morphologically generalized, making definitive identification difficult. Potential candidates include the diplobathrid camerate Pycnocrinus and the large, morphologically aberrant disparid Anomalocrinus. Regardless, if generated by an antagonistic biotic interaction, this specimen seems to support the hypothesis that crinoids with large calyxes and relatively complex arm morphologies were preferentially utilized as hosts for parasites and commensals over crinoids with simpler morphologies in the Ordovician.

References

Ausich, W. I. 1999. Upper Ordovician of the Cincinnati, Ohio, area, USA. In Fossil Crinoids (Hess, H., Ausich, W. I., Brett, C. E. & Simms, M. J., eds), pp. 75–80. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511626159.010

Bassler, R. S. 1908. The formation of geodes with remarks on the silicification of fossils. Proceedings of the United States National Museum, 35, 133–141.
http://dx.doi.org/10.5479/si.00963801.35-1637.133

Baumiller, T. K. 1990. Non-predatory drilling of Mississippian crinoids by platyceratid gastropods. Palaeontology, 33, 743–748.

Baumiller, T. K. 2003. Evaluating the interaction between platyceratid gastropods and crinoids: a cost-benefit approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 201, 199–209.
http://dx.doi.org/10.1016/S0031-0182(03)00625-4

Baumiller, T. K. & Gahn, F. J. 2004. Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science, 305, 1453–1455.
http://dx.doi.org/10.1126/science.1101009

Bohatý, J., Ausich, W. I., Nardin, E., Nyhuis, C. & Schröder, S. 2012. Coral-crinoid biocoenosis and resulting trace fossils from the Middle Devonian of the Eifel Synclines (Rhenish Massif, Germany). Journal of Paleontology, 86, 282–301.
http://dx.doi.org/10.1666/11-007.1

Bowsher, A. L. 1955. Origin and adaptation of platyceratid gastropods. University of Kansas Paleontological Contributions, 5, 1–11.

Brett, C. E. 1978. Host-specific pit-forming epizoans on Silurian crinoids. Lethaia, 11, 217–232.
http://dx.doi.org/10.1111/j.1502-3931.1978.tb01229.x

Brett, C. E. 1985. Tremichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms. Journal of Paleontology, 59, 625–635.

Brett, C. E., Deline, B. & McLaughlin, P. I. 2008. Attachment, facies distribution, and life history strategies in crinoids from the Upper Ordovician of Kentucky. In Echinoderm Paleobiology (Ausich, W. I. & Webster, G. D., eds), pp. 22–52. Indiana University Press, Bloomington.

Clark, A. H. 1921. Monograph of existing crinoids, part 2: Parasites and commensals. United States National Museum Bulletin, 82, 616–660.

De Loriol, P. 1878. Monographie des Crinoidés fossiles de la Suisse. Mémoires de la Société Paléontologique Suisse, 5, 53–124.

Donovan, S. K. 1986–1995. Pelmatozoan columnals from the Ordovician of the British Isles. Monographs of the Palaeontographical Society, 138, 142, 149, 193 pp.

Donovan, S. K. 1991a. Site selectivity of a Lower Carboniferous boring organism infesting a crinoid. Geological Journal, 26, 1–5.
http://dx.doi.org/10.1002/gj.3350260102

Donovan, S. K. 1991b. The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment. In The Processes of Fossilization (Donovan, S. K., ed.), pp. 241–269. Columbia University Press, New York.

Etheridge, R., Jr. 1879. Observations on the swollen condition of Carboniferous crinoid stems. Proceedings of the Natural History Society of Glasgow, 4, 19–36.

Fabricius, K. E. & Dale, M. B. 1993. Multispecies associations of symbionts on shallow water crinoids of the central Great Barrier Reef. Coenoses, 8, 41–52.

Fishelson, L. 1974. Ecology of the northern Red Sea crinoids and their epi- and endozoic fauna. Marine Biology, 26, 183–192.
http://dx.doi.org/10.1007/BF00388888

Franzén, C. 1974. Epizoans on Silurian–Devonian crinoids. Lethaia, 7, 287–301.
http://dx.doi.org/10.1111/j.1502-3931.1974.tb00905.x

Gahn, F. J. & Baumiller, T. K. 2005. Arm regeneration in Mississippian crinoids: evidence of intense predation pressure in the Paleozoic? Paleobiology, 31, 151–164.
http://dx.doi.org/10.1666/0094-8373(2005)031<0151:ARIMCE>2.0.CO;2

Głuchowski, E. 2005. Epibionts on upper Eifelian crinoid columnals from the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica, 50, 315–328.

Holland, S. M. & Patzkowsky, M. E. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios, 22, 392–407.
http://dx.doi.org/10.2110/palo.2006.p06-066r

Lewis, R. D. 1982. Holdfasts. In Echinoderm Faunas of the Bromide Formation (Middle Ordovician) of Oklahoma (Sprinkle, J., ed.), University of Kansas Paleontological Contributions Monograph, 1, 57–64.

Littlewood, D. T. J. & Donovan, S. K. 2003. Fossil parasites: a case of identity. Modern Geology, 19, 136–142.

Macurda, B. D., Jr. & Meyer, D. L. 1974. The microstructure of the crinoid endoskeleton. University of Kansas Pale­ontological Contributions, 74, 1–22.

Meyer, D. L. & Ausich, W. I. 1983. Biotic interactions among Recent and among fossil crinoids. In Biotic Interactions in Recent and Fossil Benthic Communities (Tevesz, M. J. S. & McCall, P. L., eds), pp. 377–427. Plenum Press, New York.
http://dx.doi.org/10.1007/978-1-4757-0740-3_9

Meyer, D. L., Miller, A. I., Holland, S. M. & Dattilo, B. F. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview formations, Upper Ordovician, Cincinnati Arch region. Journal of Paleontology, 76, 725–732.
http://dx.doi.org/10.1666/0022-3360(2002)076<0725:CDAFMT>2.0.CO;2

Miller, J. S. 1821. A Natural History of the Crinoidea of Lily-Shaped Animals, with Observations on the Genera Asteria, Euryale, Comatula, and Marsupites. C. Frost, Bristol, 150 pp.
http://dx.doi.org/10.5962/bhl.title.11565

Moore, R. C. & Jeffords, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. University of Kansas Paleontological Contributions, 46, 1–86.

Morris, R. W. & Felton, S. H. 1993. Symbiotic association of crinoids, platyceratid gastropods, and Cornulites in the Upper Ordovician (Cincinnatian) of the Cincinnati, Ohio region. Palaios, 8, 465–476.
http://dx.doi.org/10.2307/3515020

Oji, T. 2001. Fossil record of echinoderm regeneration with special regard to crinoids. Microscopy Research and Technique, 55, 397–402.
http://dx.doi.org/10.1002/jemt.1186

Raup, D. M. 1966. The endoskeleton. In Physiology of Echinodermata (Boolootian, R. A., ed.), pp. 379–395. Interscience, New York.

Schramm, T. J. 2011. Sequence Stratigraphy of the Late Ordovician (Katian), Maysvillian Stage of the Cincinnati Arch, Indiana, Kentucky, and Ohio, U.S.A. Unpublished MS thesis, University of Cincinnati, Cincinnati, 202 pp.

Seilacher, A. 1973. Biostratinomy: the sedimentology of biologically standardized particles. In Evolving Concepts in Sedimentology (Ginsburg, R. N., ed.), pp. 159–177. Johns Hopkins University Press, Baltimore.

Smith, A. B. 1989. Biomineralization in echinoderms. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (Carter, J. G., ed.), American Geophysical Union Short Course in Geology, 5, 117–147.

Ure, D. 1793. The History of Rutherglen and East-Kilbride. Niven, Glasgow, 78 pp.

Von Graff, L. 1885. Ueber einige Deformitäten an fossilen Crinoiden. Palaeontographica, 3132, 185–191.

Warn, J. M. 1974. Presumed myzostomid infestation of an Ordovician crinoid. Journal of Paleontology, 48, 506–513.

Weir, G. W., Peterson, W. L. & Swadley, W. C. 1984. Litho­stratigraphy of Upper Ordovician strata exposed in Kentucky. United States Geological Survey Professional Paper, 1151-E, 1–121.

Welch, J. R. 1976. Phosphannulus on Paleozoic crinoid stems. Journal of Paleontology, 50, 218–225.

Zmarzly, D. L. 1984. Distribution and ecology of shallow-water crinoids at Enewetak Atoll, Marshall Islands, with an annotated checklist of their symbionts. Pacific Science, 38, 105–122.

Back to Issue