headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
Vol. 63, Issue 4
Vol. 63, Issue 3
Vol. 63, Issue 2S
Vol. 63, Issue 2
Vol. 63, Issue 1
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Factorable matrices and their associated Riesz matrices; pp. 379–386

(Full article in PDF format) doi: 10.3176/proc.2014.4.03


Authors

Maria Zeltser

Abstract

A factorable matrix is a natural generalization of a Riesz matrix. When considering the properties of factorable matrices, many authors have used methods similar to the methods for Riesz matrices. So, a property having a long proof for Riesz matrices generated a long proof for a factorable matrix. In this paper for any factorable matrix we introduced its associated Riesz matrix. With its help many properties of a factorable matrix can be easily and briefly deduced from the corresponding properties of the associated Riesz matrix.

Keywords

factorable matrices, Riesz matrices, Hahn properties, 0–1 sequences, summability domain, Tauberian theorems.

References

  1. Aasma , A. Factorable matrix transforms of summability domains of Cesàro matrices. Int. J. Contemp. Math. Sci. , 2011 , 6 , 2201–2206.

  2. Bennett , G. , Boos , J. , and Leiger , T. Sequences of 0’s and 1’s. Studia Math. , 2002 , 149 , 75–99.
http://dx.doi.org/10.4064/sm149-1-5

  3. Boos , J. Classical and Modern Methods in Summability. Oxford University Press , New York , Oxford , 2000.

  4. Boos , J. and Leiger , T. On some ‘duality’ of the Nikodym property and the Hahn property. J. Math. Anal. Appl. , 2008 , 341 , 235–246.
http://dx.doi.org/10.1016/j.jmaa.2007.10.023

  5. Boos , J. and Zeltser , M. Sequences of 0’s and 1’s. Classes of concrete ‘big’ Hahn spaces. Z. Anal. Anwendungen , 2003 , 22 , 819–842.
http://dx.doi.org/10.4171/ZAA/1175

  6. Hardy , G. H. Divergent Series. Clarendon Press , Oxford , 1949.

  7. Hutnjak , S. On Potency of Factorable Matrices. MSc~thesis , Tallinn University , 2013 (in Estonian).

  8. Kuttner , B. and Parameswaran , M. R. Potent conservative summability methods. Bull. London Math. Soc. , 1994 , 26 , 297–302.
http://dx.doi.org/10.1112/blms/26.3.297

  9. Rhoades , B. E. An extension of two results of Hardy. Sarajevo J. Math. , 2013 , 9 , 95–100.
http://dx.doi.org/10.5644/SJM.09.1.08

10. Rhoades , B. E. and Sen , P. Lower bounds for some factorable matrices. Int. J. Math. Math. Sci. , 2006 , Art. ID 76135 , 1–13.

11. Zeltser , M. Bounded domains of generalized Riesz methods with the Hahn property. J. Funct. Space. Appl. , 2013 , Art. ID 908682 , 1–8.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December