headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
Vol. 63, Issue 4
Vol. 63, Issue 3
Vol. 63, Issue 2S
Vol. 63, Issue 2
Vol. 63, Issue 1
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Linearization by input–output injections on homogeneous time scales; pp. 387–397

(Full article in PDF format) doi: 10.3176/proc.2014.4.04


Authors

Monika Ciulkin, Vadim Kaparin, Ülle Kotta, Ewa Pawłuszewicz

Abstract

The problem of linearization by input–output (i/o) injections is addressed for nonlinear single-input single-output systems, defined on a homogeneous time scale. The paper provides conditions for the existence of a state transformation, bringing state equations into the observer form, which is linear up to some nonlinear input- and output-dependent functions, called i/o injections. These conditions are based on differential one-forms, associated with the i/o equation of the system.

Keywords

nonlinear control system, time scale, observer form, differential one-forms.

References

  1. Aranda-Bricaire , E. and Moog , C. H. Linearization of discrete-time systems by exogenous dynamic feedback. Automatica , 2008 , 44(7) , 1707–1717.
http://dx.doi.org/10.1016/j.automatica.2007.10.030

  2. Bartosiewicz , Z. and Pawłuszewicz , E. Realizations of nonlinear control systems on time scales. IEEE Trans. Autom. Contr. , 2008 , 53(2) , 571–575.
http://dx.doi.org/10.1109/TAC.2007.914243

  3. Bartosiewicz , Z. and Pawłuszewicz , E. External dynamical equivalence of time-varying nonlinear control systems on time scales. Int. J. Contr. , 2011 , 84(5) , 961–968.
http://dx.doi.org/10.1080/00207179.2011.584351

  4. Bartosiewicz , Z. and Piotrowska , E. On stabilisability of nonlinear systems on time scales. Int. J. Contr. , 2013 , 86(1) , 139–145.
http://dx.doi.org/10.1080/00207179.2012.721563

  5. Bartosiewicz , Z. , Kotta , Ü. , Pawłuszewicz , E. , and Wyrwas , M. Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. Phys. Math. , 2007 , 56(3) , 264–282.

  6. Bartosiewicz , Z. , Kotta , Ü. , Pawłuszewicz , E. , and Wyrwas , M. Control systems on regular time scales and their differential rings. Math. Control Signals Syst. , 2011 , 22(3) , 185–201.
http://dx.doi.org/10.1007/s00498-011-0058-7

  7. Bartosiewicz , Z. , Kotta , Ü. , Pawłuszewicz , E. , Tõnso , M. , and Wyrwas , M. Algebraic formalism of differential $p$-forms and vector fields for nonlinear control systems on homogeneous time scales. Proc. Estonian Acad. Sci. , 2013 , 62(4) , 215–226.
http://dx.doi.org/10.3176/proc.2013.4.02

  8. Belikov , J. , Kotta , Ü. , and Tõnso , M. NLControl: Symbolic package for study of nonlinear control systems. In IEEE Multi-Conference on Systems and Control , Hyderabad , India , August 28–30 , 2013 , 322–327.

  9. Bohner , M. and Peterson , A. Dynamic Equations on Time Scales. Birkhäuser , Boston , MA , USA , 2001.
http://dx.doi.org/10.1007/978-1-4612-0201-1

10. Casagrande , D. , Kotta , Ü. , Tõnso , M. , and Wyrwas , M. Transfer equivalence and realization of nonlinear input-output delta-differential equations on homogeneous time scales. IEEE Trans. Autom. Contr. , 2010 , 55(11) , 2601–2606.
http://dx.doi.org/10.1109/TAC.2010.2060251

11. Conte , G. , Moog , C. H. , and Perdon , A. M. Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Springer-Verlag , London , UK , 2nd edition , 2007.
http://dx.doi.org/10.1007/978-1-84628-595-0

12. Fliess , M. Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Autom. Contr. , 1992 , 37(8) , 1144–1153.
http://dx.doi.org/10.1109/9.151095

13. Funahashi , Y. An observable canonical form of discrete-time bilinear systems. IEEE Trans. Autom. Contr. , 1979 , 24(5) , 802–803.
http://dx.doi.org/10.1109/TAC.1979.1102154

14. Goodwin , G. C. , Graebe , S. F. , and Salgado , M. E. Control System Design. Prentice Hall , Upper Saddle River , NJ , USA , 2001.

15. Huijberts , H. J. C. On existence of extended observers for nonlinear discrete-time systems. In New Directions in Nonlinear Observer Design (Nijmeijer , H. and Fossen , T. I. , eds) , Lecture Notes Control Inform. Sci. , 1999 , 244 , 73–92.

16. Kaparin , V. and Kotta , Ü. Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections. In UKACC International Conference on CONTROL , Coventry , UK , 2010 , 507–511.

17. Kaparin , V. and Kotta , Ü. Theorem on the differentiation of a composite function with a vector argument. Proc. Estonian Acad. Sci. , 2010 , 59(3) , 195–200.
http://dx.doi.org/10.3176/proc.2010.3.01

18. Kaparin , V. and Kotta , Ü. , Shumsky , A. Ye. , and Zhirabok , A. N. A note on the relationship between single- and multi-experiment observability for discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. , 2011 , 60(3) , 174–178.
http://dx.doi.org/10.3176/proc.2011.3.05

19. Kaparin , V. , Kotta , Ü. , and Wyrwas , M. Observable space of nonlinear control system on a homogeneous time scale. Proc. Estonian Acad. Sci. , 2014 , 63(1) , 11–25.
http://dx.doi.org/10.3176/proc.2014.1.04

20. Kotta , Ü. Decomposition of discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math. , 2005 , 54(3) , 154–161.

21. Kotta , Ü. , Bartosiewicz , Z. , Pawłuszewicz , E. , and Wyrwas , M. Irreducibility , reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. & Contr. Lett. , 2009 , 58(9) , 646–651.
http://dx.doi.org/10.1016/j.sysconle.2009.04.006

22. Kotta , Ü. , Rehák , B. , and Wyrwas , M. On submersivity assumption for nonlinear control systems on homogeneous time scales. Proc. Estonian Acad. Sci. , 2011 , 60(1) , 25–37.
http://dx.doi.org/10.3176/proc.2011.1.03

23. Kotta , Ü. and Schlacher , K. Possible non-integrability of observable space for discrete-time nonlinear control systems. In The 17th IFAC World Congress , Seoul , Korea , 2008 , 9852–9856.

24. Krener , A. J. and Respondek , W. Nonlinear observers with linearizable error dynamics. SIAM J. Contr. Optim. , 1985 , 23(2) , 197–216.
http://dx.doi.org/10.1137/0323016

25. Middleton , R. H. and Goodwin , G. C. Digital Control and Estimation: A Unified Approach. Prentice Hall , Englewood Cliffs , NJ , USA , 1990.

26. Mullari , T. and Kotta , Ü. Transformation the nonlinear system into the observer form: simplification and extension. European J. Contr. , 2009 , 15(2) , 177–183.
http://dx.doi.org/10.3166/ejc.15.177-183

27. Respondek , W. , Pogromsky , A. , and Nijmeijer , H. Time scaling for observer design with linearizable error dynamics. Automatica , 2004 , 40(2) , 277–285.
http://dx.doi.org/10.1016/j.automatica.2003.09.012

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December