headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
Vol. 63, Issue 4
Vol. 63, Issue 3
Vol. 63, Issue 2S
Vol. 63, Issue 2
Vol. 63, Issue 1
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Regime shifts in the surface-level average air flow over the Gulf of Finland during 1981–2010; pp. 428–437

(Full article in PDF format) doi: 10.3176/proc.2014.4.08


Authors

Sirje Keevallik, Tarmo Soomere

Abstract

Abrupt changes in large-scale wind patterns are often masked by local features and are not visible in classical properties of surface-level winds. We explore the potential of the average air flow to reveal such changes from wind data, recorded in the region of the Gulf of Finland during 1981–2010. The monthly average air flow speed is very small in April and does not exceed 2.8 m/s during the rest of the year. The monthly mean wind directional persistency factor has a similar annual course. The direction of the average air flow does not always coincide with the direction of the most frequent winds. In summer, autumn, and winter the air flow direction is relatively stable from SW or WSW to NE or ENE over the whole gulf whereas in spring the direction varies at different measurement sites. Time series analysis by means of the Rodionov regime shift detection technique reveals that changes in the wind speed are mainly caused by changes in the measurement conditions, first of all relocation of the measurement site. Significant shifts in the air flow speed are not related to the changes in the wind speed. The changes are concentrated in the windy months. A significant increase in the air flow speed occurred in January 1988 and a comparable decrease in January 1994–1996 at all measurement sites except for Kotka. In October an abrupt decrease occurred in 1988–1989 at all stations except for Hanko. The identified shifts may be associated with a major change in the geostrophic air flow over the southern Baltic Sea in 1988 and a relaxation of the system back to the pre-1980s situation after a few years. These events do not become evident in the average wind speed.

Keywords

regime shifts, wind climate, wind speed, air flow, wind persistency factor, Gulf of Finland.

References

[BACC] The BACC Author Team. 2008. Assessment of Climate Change for the Baltic Sea Basin. Springer , Berlin , Heidelberg.

Deser , C. , Phillips , A. S. , Alexander , M. A. , and Smo­liak , B. V. 2014. Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Clim. , 27 , 2271–2296.
http://dx.doi.org/10.1175/JCLI-D-13-00451.1

Franzke , C. , Woollings , T. , and Martius , O. 2011. Persistent circulation regimes and preferred regime transitions in the North Atlantic. J. Atmosph. Sci. , 68 , 2809–2825.
http://dx.doi.org/10.1175/JAS-D-11-046.1

Jaagus , J. 2009. Long-term changes in frequencies of wind directions on the western coast of Estonia. In Climate Change Impact on Estonian Coasts (Kont , A. and Tõnisson , H. , eds). Publication 11/2009. Institute of Ecology , Tallinn University , Tallinn , Estonia , 11–24 (in Estonian).

Jaagus , J. and Kull , A. 2011. Changes in surface wind directions in Estonia during 1966–2008 and their relationships with large-scale atmospheric circulation. Estonian J. Earth Sci. , 60 , 220–231.
http://dx.doi.org/10.3176/earth.2011.4.03

Kang , S. M. , Deser , C. , and Polvani , L. M. 2013. Uncertainty in climate change projections of the Hadley circula­tion: the role of internal variability. J. Clim. , 26 , 7541–7554.
http://dx.doi.org/10.1175/JCLI-D-12-00788.1

Keevallik , S. 2003. Possibilities of reconstruction of the wind regime over Tallinn Bay. Proc. Estonian Acad. Sci. Eng. , 9 , 209–219.

Keevallik , S. 2011. Shifts in meteorological regime of the late winter and early spring in Estonia during recent decades. Theor. Appl. Climatol. , 105 , 209–215.
http://dx.doi.org/10.1007/s00704-010-0356-x

Keevallik , S. and Soomere , T. 2008. Shifts in early spring wind regime in North-East Europe (1955–2007) , Clim. Past , 4 , 147–152.
http://dx.doi.org/10.5194/cp-4-147-2008

Keevallik , S. and Soomere , T. 2009. Seasonal and diurnal variations of wind parameters at Pakri. Estonian J. Eng. , 15 , 227–239.
http://dx.doi.org/10.3176/eng.2009.3.06

Lehmann A. , Getzlaff K. , and Harlaß J. 2011. Detailed assess­ment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. , 46 , 185–196.
http://dx.doi.org/10.3354/cr00876

Luo , D. H. , Cha , J. , and Feldstein , S. B. 2012. Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part I: A likely connection. J. Atmosph. Sci. , 69 , 2329–2346.
http://dx.doi.org/10.1175/JAS-D-11-0290.1

Mohrholz , V. , Dutz , J. , and Kraus , G. 2006. The impact of exceptionally warm summer inflow events on the environmental conditions in the Bornholm Basin. J. Mar. Syst. , 60 , 285–301.
http://dx.doi.org/10.1016/j.jmarsys.2005.10.002

Morrow , R. and Kestenare , E. 2014. Nineteen-year changes in surface salinity in the Southern Ocean south of Australia. J. Mar. Syst. , 129 , 472–483.
http://dx.doi.org/10.1016/j.jmarsys.2013.09.011

Neukom , R. , Gergis , J. , Karoly , D. J. , Wanner , H. , Curran , M. , Elbert , J. et al. 2014. Inter-hemispheric temperature variability over the past millennium. Nature Clim. Change , 4 , 362–367.
http://dx.doi.org/10.1038/nclimate2174

Räämet A. , Soomere T. , and Zaitseva-Pärnaste I. 2010. Varia­tions in extreme wave heights and wave directions in the north-eastern Baltic Sea. Proc. Estonian Acad. Sci. , 59 , 182–192.
http://dx.doi.org/10.3176/proc.2010.2.18

Rodionov , S. N. 2004. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. , 31 , Art. No. L09204.
http://dx.doi.org/10.1029/2004GL019448

Rodionov , S. and Overland , J. E. 2005. Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES J. Mar. Sci. , 62 , 328–332.
http://dx.doi.org/10.1016/j.icesjms.2005.01.013

Soomere , T. and Keevallik , S. 2001. Anisotropy of moderate and strong winds in the Baltic Proper. Proc. Estonian Acad. Sci. Eng. , 7 , 35–49.

Soomere , T. and Keevallik , S. 2003. Directional and extreme wind properties in the Gulf of Finland. Proc. Estonian Acad. Sci. Eng. , 9 , 73–90.

Soomere , T. and Räämet , A. 2014. Decadal changes in the Baltic Sea wave heights. J. Mar. Syst. , 129 , 86–95.
http://dx.doi.org/10.1016/j.jmarsys.2013.03.009

Viška , M. and Soomere , T. 2012. Hindcast of sediment flow along the Curonian Spit under different wave climates. In Proc. IEEE/OES Baltic 2012 Inter­national Sym­posium “Ocean: Past , Present and Future. Climate Change Research , Ocean Observation & Advanced Technologies for Regional Sustain­ability” , May 8–11 , Klaipėda , Lithuania. IEEE Con­ference Publications , 7 pp. doi 10.1109/BALTIC.2012.6249195

Väli , G. , Meier , H. E. M. , and Elken , J. 2013. Simulated halocline variability in the Baltic Sea and its impact on hypoxia during 1961–2007. J. Geophys. Res.-Oceans , 118 , 6982–7000.

Zanchettin , D. , Bothe , O. , Müller , W. , Bader , J. , and Jung­claus , J. H. 2014. Different flavors of the Atlantic Multidecadal Variability. Clim. Dyn. , 42 , 381–399.
http://dx.doi.org/10.1007/s00382-013-1669-0

Wanner , H. , Bronnimann , S. , Casty , C. , Gyalistras , D. , Luter­bacher , J. , Schmutz , C. et al. 2001. North Atlantic Oscillation – concepts and studies , Surv. Geophys. , 22 , 321–382.
http://dx.doi.org/10.1023/A:1014217317898

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December