headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
Guidelines for Reviewers
» For Reviewers
» Review Form
List of Issues
» 2017
» 2016
» 2015
» 2014
Vol. 63, Issue 4
Vol. 63, Issue 3
Vol. 63, Issue 2S
Vol. 63, Issue 2
Vol. 63, Issue 1
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

E-sail test payload of the ESTCube-1 nanosatellite; pp. 210–221

(Full article in PDF format) doi: 10.3176/proc.2014.2S.02


Authors

Jouni Envall, Pekka Janhunen, Petri Toivanen, Mihkel Pajusalu, Erik Ilbis, Jaanus Kalde, Matis Averin, Henri Kuuste, Kaspars Laizans, Viljo Allik, Timo Rauhala, Henri Seppänen, Sergiy Kiprich, Jukka Ukkonen, Edward Haeggström, Taneli Kalvas, Olli Tarvainen, Janne Kauppinen, Antti Nuottajärvi, Hannu Koivisto

Abstract

The scientific mission of ESTCube-1, launched in May 2013, is to measure the electric solar wind sail (E-sail) force in orbit. The experiment is planned to push forward the development of the E-sail, a propulsion method recently invented at the Finnish Meteorological Institute. The E-sail is based on extracting momentum from the solar wind plasma flow by using long thin electrically charged tethers. ESTCube-1 is equipped with one such tether, together with hardware capable of deploying and charging it. At the orbital altitude of ESTCube-1 (660–680 km) there is no solar wind present. Instead, ESTCube-1 shall observe the interaction between the charged tether and the ionospheric plasma. The ESTCube-1 payload uses a 10-m, partly two-filament E-sail tether and a motorized reel on which it is stored. The tether shall be deployed from a spinning satellite with the help of centrifugal force. An additional mass is added at the tip of the tether to assist with the deployment. During the E-sail experiment the tether shall be charged to 500 V potential. Both positive and negative voltages shall be experimented with. The voltage is provided by a dedicated high-voltage source and delivered to the tether through a slip ring contact. When the negative voltage is applied to the tether, the satellite body is expected to attract the electron flow capable of compensating for the ion flow, which runs to the tether from the surrounding plasma. With the positive voltage applied, onboard cold cathode electron guns are used to remove excess electrons to maintain the positive voltage of the tether. In this paper we present the design and structure of the tether payload of ESTCube-1.

Keywords

space research, propulsion, satellite, nanosatellite, electric solar wind sail, E-sail, ESTCube-1.

References

  1. Janhunen , P. and Sandroos , A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. , 2007 , 25 , 755–767.
http://dx.doi.org/10.5194/angeo-25-755-2007

  2. Janhunen , P. , Toivanen , P. , Envall , J. , Merikallio , S. , Montesanti , G. , Gonzalez del Amo , J. et al. Overview of electric solar wind sail applications. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 267–278.

  3. Janhunen , P. The electric sail – a new propulsion method which may enable fast missions to the outer solar system. J. British Interpl. Soc. , 2008 , 61 , 322–325.

  4. Mengali , G. and Quarta , A. A. Non-Keplerian orbits for electric sails. Cel. Mech. Dyn. Astron. , 2009 , 105 , 179–195.
http://dx.doi.org/10.1007/s10569-009-9200-y

  5. Janhunen , P. On the feasibility of a negative polarity electric sail. Ann. Geophys. , 2009 , 27 , 1439–1447.
http://dx.doi.org/10.5194/angeo-27-1439-2009

  6. Toivanen , P. K. and Janhunen , P. Electric sailing under observed solar wind conditions. Astrophys. Space Sci. Trans. , 2009 , 5 , 61–69.
http://dx.doi.org/10.5194/astra-5-61-2009

  7. Quarta , A. A. and Mengali , G. Electric sail missions to potentially hazardous asteroids. Acta Astronaut. , 2010 , 66 , 1506–1519.
http://dx.doi.org/10.1016/j.actaastro.2009.11.021

  8. Janhunen , P. , Toivanen , P. K. , Polkko , J. , Merikallio , S. , Salminen , P. , Haeggström , E. et al. Electric solar wind sail: towards test missions. Rev. Sci. Instrum. , 2010 , 81 , 111301–111301–11.
http://dx.doi.org/10.1063/1.3514548

  9. Merikallio , S. and Janhunen , P. Moving an asteroid with electric solar wind sail. Astrophys. Space Sci. Trans. , 2010 , 6 , 41–48.
http://dx.doi.org/10.5194/astra-6-41-2010

10. Lätt , S. , Slavinskis , A. , Ilbis , E. , Kvell , U. , Voormansik , K. , Kulu , E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 200–209.

11. Seppänen , H. , Kiprich , S. , Kurppa , R. , Janhunen , P. , and Haeggström , E. Wire-to-wire bonding of μm-diameter aluminum wires for the Electric Solar Wind Sail. Microelectron. Eng. , 2011 , 88 , 3267–3269.
http://dx.doi.org/10.1016/j.mee.2011.07.002

12. Seppänen , H. , Rauhala , T. , Kiprich , S. , Ukkonen , J. , Simonsson , M. , Kurppa , R. et al. One kilometer (1 km) electric solar wind sail tether produced automatically. Rev. Sci. Instrum. , 2013 , 84 , 095102.
http://dx.doi.org/10.1063/1.4819795

13. Edelbauer , M. and Porn , M. Tecasint Handbook. Ensinger GmbH (available online at http://ensinger-inc.com/downloads/lit_brochures/TECASINT-handbook.pdf).

14. Obraztsov , A. N. and Kleshch , V. I. Cold and laser stimulated electron emission from nanocarbons. J. Nanoelectron. Optoelectron. , 2009 , 4(2) , 207–219.
http://dx.doi.org/10.1166/jno.2009.1023

15. Slavinskis , A. , Kulu , E. , Viru , J. , Valner , R. , Ehrpais , H. , Uiboupin , T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 242–249.

16. Slavinskis , A. , Kvell , U. , Kulu , E. , Sünter , I. , Kuuste , H. , Lätt , S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut. , 2014 , 95 , 218–226.
http://dx.doi.org/10.1016/j.actaastro.2013.11.014

 
Back

Current Issue: Vol. 66, Issue 3 in Press, 2017




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December