headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
Guidelines for Reviewers
» For Reviewers
» Review Form
List of Issues
» 2018
» 2017
» 2016
» 2015
» 2014
Vol. 63, Issue 4
Vol. 63, Issue 3
Vol. 63, Issue 2S
Vol. 63, Issue 2
Vol. 63, Issue 1
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Imaging system for nanosatellite proximity operations; pp. 250–257

(Full article in PDF format) doi: 10.3176/proc.2014.2S.06


Authors

Henri Kuuste, Tõnis Eenmäe, Viljo Allik, Ants Agu, Riho Vendt, Ilmar Ansko, Kaspars Laizans, Indrek Sünter, Silver Lätt, Mart Noorma

Abstract

This paper presents a novel low-power imaging system for nanosatellite proximity operations. A robust independent camera module with on-board image processing, based on the ARM Cortex-M3 microcontroller and fast static random access memory, has been developed and characterized for the requirements of the ESTCube-1 mission. The imaging system, optimized for use in a single unit CubeSat, utilizes commercial off-the-shelf components and standard interfaces for a cost-effective reusable design. The resulting 43.3 mm £ 22 mm £ 44.2 mm (W£H£D) aluminium camera module weighs 30 g and consumes on the average of 118 mW of power, with peaks of 280 mW during image capture. Space qualification and stress tests have been performed. A detailed case study for the ESTCube-1 10 m tether deployment monitoring and Earth imaging mission is presented. For this purpose a 4.4 mm telecentric lens, 10 bit 640£480 pixel CMOS image sensor, 700 nm infrared cut-off filter and a 25% neutral density filter are used. The resolution of the assembled system is 12.7 mm and 1 km per pixel at distances of 10 m and 700 km, respectively. Custom on-board image evaluation and high dynamic range imaging algorithms for ESTCube-1 have been implemented and tested. Optical calibration of the assembled system has been performed.

Keywords

ESTCube-1, CubeSat, camera, imaging, monitoring, proximity operations, nanosatellite.

References

  1. CubeSat Design Specification Revision 12. California State Polytechnic University , 2009.

  2. Ansdell , M. , Ehrenfreund , P. , and McKay , C. Stepping stones toward global space exploration. Acta Astronaut. , 2011 , 68 , 2098–2113.
http://dx.doi.org/10.1016/j.actaastro.2010.10.025

  3. Ehrenfreund , P. , McKay , C. , Rummel , J. D. , Foing , B. H. , Neal , C. R. , Masson-Zwaan , T. et al. Toward a global space exploration program: A stepping stone approach. Adv. Space Res. , 2012 , 49 , 2–48.
http://dx.doi.org/10.1016/j.asr.2011.09.014

  4. Bouwmeester , J. and Guo , J. Survey of worldwide picoand nanosatellite missions , distributions and subsystem technology. Acta Astronaut. , 2010 , 67 , 854–862.
http://dx.doi.org/10.1016/j.actaastro.2010.06.004

  5. Woellert , K. , Ehrenfreund , P. , Ricco , A. J. , and Hertzfeld , H. Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Adv. Space Res. , 2011 , 47 , 663–684.
http://dx.doi.org/10.1016/j.asr.2010.10.009

  6. Selva , D. and Krejci , D. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut. , 2012 , 74 , 50–68.
http://dx.doi.org/10.1016/j.actaastro.2011.12.014

  7. Shiroma , W. A. , Martin , L. K. , Akagi , J. M. , Akagi , J. T. , Wolfe , B. L. , Fewell , B. A. et al. CubeSats: A bright future for nanosatellites. Cent. Eur. J. Eng. , 2011 , 1 , 9–15.
http://dx.doi.org/10.2478/s13531-011-0007-8

  8. Shimizu , K. University of Tokyo nano satellite project “PRISM”. In Proc. 27th Int. Symp. on Space Technol. and Sci. , 2009 , 4–9.

  9. Tsuda , Y. , Sako , N. , Eishima , T. , Ito , T. , Arikawa , Y. , Miyamura , N. et al. University of Tokyo’s CubeSat project – its educational and technological significance. In Proc. 15th Annual AIAA/USU Confer. on Small Satellites , 2001 , 13–16.

10. Tsuda , Y. , Sako , N. , Eishima , T. , Ito , T. , Arikawa , Y. , Miyamura , N. et al. University of Tokyo’s CubeSat “XI” as a student-built educational pico-satellite – Final design and operation plan. In Proc. 23rd Int. Symp. of Space Technol. and Sci. , 2002 , vol. 2 , 1372–1377.

11. Kurtulus , C. , Baltaci , T. , Ulusoy , M. , Aydm , B. T. , Tutkun , B. , Inalhan , G. et al. iTU-pSAT I: Istanbul Technical University Student Pico-Satellite program. In Proc. IEEE 3rd Int. Confer. on Recent Adv. Space Technol. RAST’07 , 2007 , 725–732.

12. Rankin , D. , Kekez , D. D. , Zee , R. E. , Pranajaya , F. M. , Foisy , D. G. , and Beattie , A. M. The CanX-2 nanosatellite: Expanding the science abilities of nanosatellites. Acta Astronaut. , 2005 , 57 , 167–174.
http://dx.doi.org/10.1016/j.actaastro.2005.03.032

13. Scholz , A. , Giesselmann , J. , and Duda , C. CubeSat technical aspects. In Proc. 55th Int. Astronaut. Congr. , 2004.

14. Scholz , A. , Ley , W. , Dachwald , B. , Miau , J. J. , and Juang , J. C. Flight results of the COMPASS-1 picosatellite mission. Acta Astronaut. , 2010 , 67 , 1289–1298.
http://dx.doi.org/10.1016/j.actaastro.2010.06.040

15. Ashida , H. , Fujihashi , K. , Inagawa , S. , Miura , Y. , Omagari , K. , Miyashita , N. et al. Design of Tokyo Tech nanosatellite Cute-1.7+APD II and its operation. Acta Astronaut. , 2010 , 66 , 1412–1424.
http://dx.doi.org/10.1016/j.actaastro.2009.10.035

16. Stras , L. , Kekez , D. D. , Wells , G. J. , Jeans , T. , Zee , R. E. , Pranajaya , F. M. et al. The design and operation of the Canadian advanced nanospace eXperiment (CanX-1). In Proc. AMSAT-NA 21st Space Symp. , Toronto , Canada. 2003 , 150–160.

17. Sarda , K. , Eagleson , S. , Caillibot , E. , Grant , C. , Kekez , D. , Pranajaya , F. et al. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite. Acta Astronaut. , 2006 , 59 , 236–245.
http://dx.doi.org/10.1016/j.actaastro.2006.02.054

18. Deschamps , N. C. , Grant , C. C. , Foisy , D. G. , Zee , R. E. , Moffat , A. F. J. , and Weiss , W. W. The BRITE space telescope: Using a nanosatellite constellation to measure stellar variability in the most luminous stars. Acta Astronaut. , 2009 , 65 , 643–650.
http://dx.doi.org/10.1016/j.actaastro.2009.01.026

19. Koudelka , O. , Egger , G. , Josseck , B. , Deschamp , N. , Cordell Grant , C. , Foisy , D. et al. TUGSAT-1/BRITEAustria – The first Austrian nanosatellite. Acta Astronaut. , 2009 , 64 , 1144–1149.
http://dx.doi.org/10.1016/j.actaastro.2009.01.016

20. Taraba , M. , Rayburn , C. , Tsuda , A. , and MacGillivray , C. Boeing’s CubeSat TestBed 1 attitude determination design and on-orbit experience. In Proc. AIAA/USU Confer. on Small Satellites , 2009.

21. Miyashita , N. , Iai , M. , Omagari , K. , Imai , K. , Yabe , H. , Miyamoto , K. et al. Development of nano-satellite Cute-1. 7 + APD and its current status. In 56th Int. Astronaut. Congr. , 2005.

22. Tsuda , Y. , Mori , O. , Funase , R. , Sawada , H. , Yamamoto , T. , Saiki , T. et al. Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut. , 2011 , 69 , 833–840.
http://dx.doi.org/10.1016/j.actaastro.2011.06.005

23. Tanaka , T. , Kawamura , Y. , and Tanaka , T. Overview and operations of CubeSat FITSAT-1 (NIWAKA). In Proc. 6th International Confer. on Recent Advances in Space Technologies , 2013.

24. Dickinson , J. , DeForest , C. , and Howard , T. The CubeSat Heliospheric Imaging Experiment (CHIME). In Proc. Aerospace Confer. , 2011 IEEE. 2011 , 1–12.
http://dx.doi.org/10.1109/AERO.2011.5747285

25. Borgeaud , M. , Scheidegger , N. , Noca , M. , Roethlisberger , G. , Jordan , F. , Choueiri , T. et al. SwissCube: The first entirely-built swiss student satellite with an Earth observation payload. In Small Satellite Missions for Earth Observation (Sandau , R. , Roeser , H. P. , and Valenzuela , A. , eds). Springer , Berlin , Heidelberg , 2010 , 207–213.
http://dx.doi.org/10.1007/978-3-642-03501-2_19

26. Noca , M. , Jordan , F. , Steiner , N. , Choueiri , T. , George , F. , Roethlisberger , G. et al. Lessons learned from the first Swiss pico-satellite: SwissCube. Science , 2009.

27. Bridges , C. , Kenyon , S. , Underwood , C. , Lappas , V. STRaND-1: The world’s first smartphone nanosatellite. In Proc. 2nd International Confer. on Space Technology (ICST) , 2011 , 1–3.

28. Alminde , L. , Bisgaard , M. , Vinther , D. , Viscor , T. , and Ostergard , K. Educational value and lessons learned from the AAUCubeSat project. In Proc. International Confer. on Recent Adv. in Space Technol. , 2003 , 57–62.

29. Alminde , L. , Bisgaard , M. , Bhanderi , D. , and Nielsen , J. D. Experience and methodology gained from 4 years of student satellite projects. In Proc. International Confer. on Recent Adv. in Space Technol. , 2005 , 94–99.

30. Lätt , S. , Slavinskis , A. , Ilbis , E. , Kvell , U. , Voormansik , K. , Kulu , E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 200–209.

31. Janhunen , P. , Toivanen , P. K. , Polkko , J. , Merikallio , S. , Salminen , P. , Haeggstrom , E. et al. Invited Article: Electric solar wind sail: Toward test missions. Rev. Sci. Instrum. , 2010 , 81 , 111301–111311.
http://dx.doi.org/10.1063/1.3514548

32. Pajusalu , M. , Ilbis , E. , Ilves , T. , Veske , M. , Kalde , J. , Lillmaa , H. et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 232–241.

33. Envall , J. , Janhunen , P. , Toivanen , P. , Pajusalu , M. , Ilbis , E. , Kalde , J. et al. E-sail test payload of the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 210–221.

34. STMicroelectronics. DS6697: ARM-based 32-bit MCU , 150DMIPs , up to 1MB Flash/128+4KB RAM , crypto , USB OTG HS/FS , Ethernet , 17 TIMs , 3 ADCs , 15 comm. interfaces & camera; 2011. http://www.st.com./web/en/resource/technical/document/datasheet/CD00263874.pdf

35. Integrated Silicon Solution , Inc. IS61WV102415BLL. 1M x 16 High-speed asynchronous CMOS static RAM with 3.3 V supply; 2006. http://www.issi.com./ww/pdf/61WV102415ALL.pdf

36. USB Implementers Forum , Inc. Universal Serial Bus Specification Revision 2.0; 2000. http://www.usb.org/developers/docs/usb20 docs

37. Aptina Imaging Corporation. MT9V011: 1/4-Inch VGA Digital Image Sensor; 2009.

38. Laizans , K. , Sünter , I. , Zalite , K. , Kuuste , H. , Valgur , M. , Tarbe , K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 222–231.

39. Slavinskis , A. , Kulu , E. , Viru , J. , Valner , R. , Ehrpais , H. , Uiboupin , T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci. , 2014 , 63(2S) , 242–249.

 
Back

Current Issue: Vol. 67, Issue 1, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December