ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Spatio-temporal variability of surface sediment phosphorus fractions and water phosphorus concentration in Lake Peipsi (Estonia/Russia); pp. 171–180
PDF | doi: 10.3176/earth.2013.14

Authors
Mihkel Kangur, Liisa Puusepp, Olga Buhvestova, Marina Haldna, Külli Kangur
Abstract

Spatial and temporal variations in the contents of total phosphorus and five P-fractions were investigated in the surface sediments of large and shallow Lake Peipsi (area 3555 km2, mean depth 7.1 m) and compared with total phosphorus (TP), dissolved inorganic P (PO4-P) and dissolved oxygen (O2) concentration in the overlying water column. The aim of the study was to determine the relationships between the sediment P and water P concentration dynamics. Samples from the uppermost 10-cm layer of the sediment and water samples from surface and near-bottom layers were collected simultaneously at six monitoring stations twice a year (in March and August) from 2004 to 2009. The results indicated that the concentrations of different P-fractions in the studied sediments varied greatly. Total P in sediment ranged from 470 to 1400 mg kg–1 dry mass (DM), while the loosely bound (labile) P (NH4Cl-P) was the smallest and the most variable fraction (range from 3.6 to 43 mg kg–1 DM). The metal oxide-bound P (NaOH-P) was also highly variable (range from 48 to 660 mg kg–1 DM), whereas the concentration of calcium-bound P (HCl-P) was relatively even (range from 300 to 550 mg kg–1 DM) in all the studied sediments. Redundancy analysis results revealed that different phosphorus fractions in sediment had statistically significant relationships with bottom-water variables like TP (in winter) and O2 (in summer). Our results show that the oxygen conditions have deteriorated in the lake during the last decades, which may have enhanced the release of P from the sediments.

References

Andersen, F. Ø. & Ring, P. 1999. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia, 408–409, 175–183.
http://dx.doi.org/10.1023/A:1017027818233

Boström, B., Jansson, M. & Forsberg, C. 1982. Phosphorus release from lake sediments. Archiv für Hydrobiologie. Advances in Limnology, 18, 5–59.

Boström, B., Andersen, J. M., Fleischer, S. & Jansson, M. 1988. Exchange of phosphorus across the sediment–water interface. Hydrobiologia, 170, 229–244.
http://dx.doi.org/10.1007/BF00024907

Bradshaw, E. G., Anderson, N. J., Jensen, J. P. & Jeppesen, E. 2002. Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology, 47, 1963–1975.
http://dx.doi.org/10.1046/j.1365-2427.2002.00938.x

Carpenter, S. R. 2005. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102, 10002–10005.
http://dx.doi.org/10.1073/pnas.0503959102

Cullen, P. & Forsberg, C. 1988. Experience with reducing point sources of phosphorus to lakes. Hydrobiologia, 170, 321–336.
http://dx.doi.org/10.1007/BF00024912

Dillon, P. J. & Rigler, F. H. 1974. A test of simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Research Board of Canada, 31, 1771–1778.
http://dx.doi.org/10.1139/f74-225

[ECS] Estonian Centre for Standardisation. 1999. Determination of Dissolved Oxygen – Electrochemical Method. Standard EVS-EN 25814.

[ECS] Estonian Centre for Standardisation. 2000. Determination of Phosphorus – Ammonium Molybdate Spectrometric Method. Standard EVS-EN 1189.

Håkanson, L., Ostapenia, A. P. & Boulion, V. V. 2003. A mass-balance model for phosphorus in lakes accounting for biouptake and retention in biota. Freshwater Biology, 48, 928–950.
http://dx.doi.org/10.1046/j.1365-2427.2003.01057.x

Heiri, O., Lotter, A. F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.
http://dx.doi.org/10.1023/A:1008119611481

Istvánovics, V. 2008. The role of biota in shaping the phosphorus cycle in lakes. Freshwater Reviews, 1, 143–174.

Jaani, A. 2001. The location, size and general characterisation of Lake Peipsi and its catchment area. In Lake Peipsi. Meteorology, Hydrology, Hydrochemistry (Nõges, T., ed.), pp. 10–17. Sulemees Publishers, Tartu.

Jeppesen, E., Jensen, J. P., Søndergaard, M., Lauridsen, T., Pedersen, L. J. & Jensen, L. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342, 151–164.
http://dx.doi.org/10.1023/A:1017046130329

Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K., Anneville, O., Carvalho, L., Coveney, M. F., Deneke, R., Dokulil, M., Foy, B., Gerdeaux, D., Hampton, S. E., Kangur, K., Köhler, J., Körner, S., Lammens, E., Lauridsen, T. L., Manca, M., Miracle, R., Moss, B., Nõges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C. L., Straile, D., Tatrai, I., Willén, E. & Winder, M. 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50, 1747–1771.
http://dx.doi.org/10.1111/j.1365-2427.2005.01415.x

Kaiserli, A., Voutsa, D. & Samara, C. 2002. Phosphorus fractionation in lake sediments – Lakes Volvi and Koronia, N. Greece. Chemosphere, 46, 1147–1155.
http://dx.doi.org/10.1016/S0045-6535(01)00242-9

Kangur, K. & Möls, T. 2008. Changes in spatial distribution of phosphorus and nitrogen in the large north-temperate lowland Lake Peipsi (Estonia/Russia). Hydrobiologia, 599, 31–39.
http://dx.doi.org/10.1007/s10750-007-9204-0

Kangur, K., Möls, T., Milius, A. & Laugaste, R. 2003. Phyto­plankton response to changed nutrient level in Lake Peipsi (Estonia) in 1992–2001. Hydrobiologia, 506–509, 265–272.
http://dx.doi.org/10.1023/B:HYDR.0000008574.40590.8f

Kangur, K., Kangur, A., Kangur, P. & Laugaste, R. 2005. Fish kill in Lake Peipsi in summer 2002 as a synergistic effect of a cyanobacterial bloom, high temperature, and low water level. Proceedings of the Estonian Academy of Sciences, Biology, Ecology, 54, 67–80.

Kangur, K., Kangur, A. & Raukas, A. 2012. Peipsi Lake in Estonia/Russia. In Encyclopedia of Lakes and Reservoirs (Bengtsson, L., Herschy, R. & Fairbridge, R., eds), pp. 596–607. Springer, Netherlands.

Kangur, M., Kangur, K., Laugaste, R., Punning, J.-M. & Möls, T. 2007. Combining limnological and palaeo­limno­logical approaches in assessing degradation of Lake Pskov. Hydrobiologia, 584, 121–132.
http://dx.doi.org/10.1007/s10750-007-0597-6

Kapanen, G. 2012a. Phosphorus in the bottom sediments of the large shallow Lake Peipsi: environmental factors and anthropogenic impact on the lake ecosystem. Tallinn University Dissertations on Natural Sciences, 28, 1–69.

Kapanen, G. 2012b. Pool of mobile and immobile phosphorus in sediments of the large, shallow Lake Peipsi over the last 100 years. Environmental Monitoring and Assessment, 184, 6749–6763.
http://dx.doi.org/10.1007/s10661-011-2455-2

Kelderman, P., Wei, Z. & Maessen, M. 2005. Water and mass budgets for estimating phosphorus sediment–water exchange in Lake Taihu (China PR). Hydrobiologia, 544, 167–175.
http://dx.doi.org/10.1007/s10750-005-0542-5

Lehtoranta, J. 2003. Dynamics of sediment phosphorus in the brackish Gulf of Finland. Monographs of the Boreal Environment Research, 24, 1–52.

Maassen, S., Uhlmann, D. & Röske, I. 2005. Sediment and pore water composition as a basis for the trophic evaluation of standing waters. Hydrobiologia, 543, 55–70.
http://dx.doi.org/10.1007/s10750-004-5946-0

Moss, B., Jeppesen, E., Søndergaard, M., Lauridsen, T. L. & Liu, Z. 2013. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia, 710, 3–21.
http://dx.doi.org/10.1007/s10750-012-1033-0

Niemistö, J., Tamminen, P., Ekholm, P. & Horppila, J. 2012. Sediment resuspension: rescue or downfall of a thermally stratified eutrophic lake? Hydrobiologia, 686, 267–276.
http://dx.doi.org/10.1007/s10750-012-1021-4

Nõges, P. & Kisand, A. 1999. Horizontal distribution of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia, 408, 167–174.
http://dx.doi.org/10.1023/A:1017075701395

Nowlin, W. H., Evarts, J. L. & Vanni, M. J. 2005. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshwater Biology, 50, 301–322.
http://dx.doi.org/10.1111/j.1365-2427.2004.01316.x

Nürnberg, G. K. 1991. Phosphorus from internal sources in the Laurentian Great Lakes, and the concept of threshold external load. Journal of Great Lakes Research, 17, 132–140.
http://dx.doi.org/10.1016/S0380-1330(91)71348-8

Punning, J.-M. & Kapanen, G. 2009. Phosphorus flux in Lake Peipsi sensu stricto, Eastern Europe. Estonian Journal of Ecology, 58, 3–17.
http://dx.doi.org/10.3176/eco.2009.1.01

Punning, J.-M., Raukas, A., Terasmaa, J. & Vaasma, T. 2009. Surface sediments of transboundary Lake Peipsi: composition, dynamics and role in matter cycling. Environmental Geology, 57, 943–951.
http://dx.doi.org/10.1007/s00254-008-1378-x

Puusepp, L. & Punning, J.-M. 2011. Spatio-temporal variability of diatom assemblages in surface sediments of Lake Peipsi. Journal of Great Lakes Research, 37, 33–40.
http://dx.doi.org/10.1016/j.jglr.2010.11.018

Ruban, V., Lopez-Sanchez, J. F., Pardo, P., Rauret, G., Muntau, H. & Quevauviller, P. 1999. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1, 51–56.
http://dx.doi.org/10.1039/a807778i

[SAS] SAS Institute Inc. 2008. SAS OnlineDoc 9.2. Cary, NC: SAS Institute Inc.

Søndergaard, M. 2007. Nutrient Dynamics in Lakes – with Emphasis on Phosphorus, Sediment and Lake Restorations. Doctor’s dissertation (DSc), National Environmental Research Institute, University of Aarhus, Denmark.

Søndergaard, M., Bruun, L., Lauridsen, T. L., Jeppesen, E. & Vindbæk Madsen, T. 1996. The impact of grazing waterflow on submerged macrophytes. In situ experiments in a shallow eutrophic lake. Aquatic Botany, 53, 73–84.
http://dx.doi.org/10.1016/0304-3770(95)01013-0

Søndergaard, M., Jensen, J. P. & Jeppesen, E. 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia, 408, 145–152.
http://dx.doi.org/10.1023/A:1017063431437

Søndergaard, M., Jensen, J. P., Jeppesen, E. & Møller, P. H. 2002. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquatic Ecosystem Health & Management, 5, 19–29.
http://dx.doi.org/10.1080/14634980260199936

Søndergaard, M., Jensen, J. P. & Jeppesen, E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506, 135–145.
http://dx.doi.org/10.1023/B:HYDR.0000008611.12704.dd

Søndergaard, M., Jensen, J. P. & Jeppesen, E. 2005. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology, 50, 1605–1615.
http://dx.doi.org/10.1111/j.1365-2427.2005.01412.x

Spears, B. M., Carvalho, L., Perkins, R., Kirika, A. & Paterson, D. M. 2006. Spatial and historical variation in sediment phosphorus fractions and mobility in a large shallow lake. Water Research, 40, 383–391.
http://dx.doi.org/10.1016/j.watres.2005.11.013

Ter Braak, C. J. F. & Prentice, I. C. 1988. A theory of gradient analysis. Advances in Ecological Research, 18, 271–317.
http://dx.doi.org/10.1016/S0065-2504(08)60183-X

Ter Braak, C. J. F. & Šmilauer, P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Ordination, Version 4.5. Ithaca, NY, Microcomputer power.

Ting, D. S. & Appan, A. 1996. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs. Water Science and Technology, 34, 53–59.
http://dx.doi.org/10.1016/S0273-1223(96)00724-X

Wang, S., Jin, X., Zhao, H. & Wu, F. 2006. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273, 109–116.
http://dx.doi.org/10.1016/j.colsurfa.2005.08.015

Back to Issue