headerpos: 9460
 
 
  Estonian Journal of Ecology

ISSN 1736-7549 (electronic)   ISSN 1736-602X (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences: Biology, Ecology
(ISSN 1406-0914)
Published since 1952
 

Estonian Journal of Ecology

ISSN 1736-7549 (electronic)   ISSN 1736-602X (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences: Biology, Ecology
(ISSN 1406-0914)
Published since 1952
 

Publisher
Journal Information
» Abstractring/Indexing
List of Issues
» 2014
» 2013
Vol. 62, Issue 4
Vol. 62, Issue 3
Vol. 62, Issue 2
Vol. 62, Issue 1
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other Journals
» Staff

Potential for fast chlorophyll a fluorescence measurement in bryophyte ecophysiology; pp. 137–149

(Full article in PDF format) doi: 10.3176/eco.2013.2.05


Authors

Ligita Liepiņa, Gederts Ievinsh

Abstract

The aim of the study was to analyse if the measurement of fast fluorescence induction kinetics in bryophyte samples in field conditions could be used for characterizing the photochemistry of photosynthesis in bryophytes. Bryophyte samples were collected in five different habitats of the boreo-nemoral zone growing on various substrates. Twenty-four species were epigeic, six epilithic, ten epiphytic, three epixylic, and six semi-aquatic or aquatic. Extremely high variation was found for fluorescence parameters between bryophyte samples. Performance Index showed the highest variability, reaching 160% in the case of epiphytic bryophytes. There were statistically significant differences for mean values of Fv/Fm, RC/ABS, and Fv/F0 between epigeic and epiphytic bryophyte samples as well as between epiphytic and semi-aquatic & aquatic samples. For Performance Index, a significant difference was observed only between epiphytic and epigeic bryophytes. It was concluded that bryophytes display a low intensity of the photochemistry of photosynthesis even in relatively wet habitats. In general, measurement of fast fluorescence induction kinetics in field conditions could be a rapid and efficient tool to obtain quantitative data useful for ecophysiological studies.

Keywords

boreo-nemoral zone, bryophyte species, chlorophyll a fluorescence, habitats, photochemistry of photosynthesis, photosystem II, substrates.

References

Albert , K. R. , Mikkelsen , T. N. , Ro-Poulsen , H. , Arndal , M. F. & Michelsen , A. 2011. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. Environmental and Experimental Botany , 73 , 10–18.
http://dx.doi.org/10.1016/j.envexpbot.2011.08.003

Andersone , U. , Druva-Lūsīte , I. , Ieviņa , B. , Karlsons , A. , Ņečajeva , J. , Samsone , I. & Ievinsh , G. 2011. The use of nondestructive methods to assess a physiological status and conservation perspectives of Eryngium maritimum L. Journal of Coastal Conservation , 15 , 509–522.
http://dx.doi.org/10.1007/s11852-010-0139-7

Appenroth , K.-J. , Stöckel , J. , Srivastava , A. & Strasser , R. J. 2001. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution , 115 , 49–64.
http://dx.doi.org/10.1016/S0269-7491(01)00091-4

Bates , J. W. 1997. Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Annals of Botany , 79 , 299–309.
http://dx.doi.org/10.1006/anbo.1996.0335

Bates , J. W. , Wibbelmann , M. H. & Proctor , M. C. F. 2009. Salinity responses of halophytic and non-halophytic bryophytes determined by chlorophyll fluorometry. Journal of Bryology , 31 , 11–19.
http://dx.doi.org/10.1179/174328208X380365

Beckett , R. P. , Marschall , M. & Laufer , Z. 2005. Hardening enhances photoprotection in the moss Atricum androgynum during rehydration by increasing fast- rather than slow-relaxing quenching. Journal of Bryology , 27 , 7–12.
http://dx.doi.org/10.1179/174328205X40536

Clark , A. J. , Landolt , W. , Bucher , J. B. & Strasser , R. J. 2000. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environmental Pollution , 109 , 501–507.
http://dx.doi.org/10.1016/S0269-7491(00)00053-1

Cleavitt , N. L. 2002. Stress tolerance of rare and common moss species in relation to their occupied environments and asexual dispersal potential. Journal of Ecology , 90 , 785–795.
http://dx.doi.org/10.1046/j.1365-2745.2002.00713.x

Cleland , R. E. , Melis , A. & Neale , P. J. 1986. Mechanism of photoinhibition: photochemical reaction center inactivation in system II chloroplasts. Photosynthesis Research , 9 , 79–88.
http://dx.doi.org/10.1007/BF00029734

Cornelissen , J. H. C. , Lang , S. I. , Soudzilovskaia , N. A. & During , H. J. 2007. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany , 99 , 987–1001.
http://dx.doi.org/10.1093/aob/mcm030

Cruz de Carvalho , R. , Branquinho , C. & Marques da Silva , J. 2011. Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta , 234 , 195–205.
http://dx.doi.org/10.1007/s00425-011-1388-x

Cui , X. , Gu , S. , Wu , J. & Tang , Y. 2009. Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau. Ecological Research , 24 , 645–653.
http://dx.doi.org/10.1007/s11284-008-0535-8

Deltoro , V. I. , Calatayud , A. , Gimeno , C. & Barreno , E. 1998. Water relations , chlorophyll fluorescence , and membrane permeability during desiccation in bryophytes from xeric , mesic , and hydric environments. Canadian Journal of Botany , 76 , 1923–1929.
http://dx.doi.org/10.1139/b98-167

Diekmann , M. 1994. Deciduous forest vegetation in boreo-nemoral Scandinavia. Acta Phytogeographica Suecica , 80 , 1–116.

Garbary , D. J. , Miller , A. G. , Scrosati , R. , Kim , K.-Y. & Schofield , W. B. 2008. Distribution and salinity tolerance of intertidal mosses from Nova Scotian salt marshes. Bryologist , 111 , 282–291.
http://dx.doi.org/10.1639/0007-2745(2008)111[282:DASTOI]2.0.CO;2

Glime , J. M. 2007. Bryophyte Ecology. Vol. 1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu/ (accessed 05.05.2012).

Granath , G. , Strengbom , J. , Breeuwer , A. , Heijmans , M. M. P. D. , Berendse , F. & Rydin , H. 2009. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia , 159 , 705–715.
http://dx.doi.org/10.1007/s00442-008-1261-1

Hájek , T. & Beckett , R. P. 2008. Effect of water content components on desiccation and recovery in Sphagnum mosses. Annals of Botany , 101 , 165–173.
http://dx.doi.org/10.1093/aob/mcm287

Hájek , T. , Tuittila , E.-S. , Ilomets , M. & Laiho , R. 2009. Light responses of mire mosses – a key to survival after water-level drawdown? Oikos , 118 , 240–250.
http://dx.doi.org/10.1111/j.1600-0706.2008.16528.x

Heber , U. , Bilger , W. & Shuvalov , V. A. 2006. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. Journal of Experimental Botany , 57 , 2993–3006.
http://dx.doi.org/10.1093/jxb/erl058

Hooijmaijers , C. 2008. Membrane integrity , oxidative damage and chlorophyll fluorescence during dehydration of the thalloid liverwort Monoclea forsteri Hook. Journal of Bryology , 30 , 217–222.
http://dx.doi.org/10.1179/174328208X322279

Jung , V. , Hoffmann , L. & Muller , S. 2009. Ecophysiological responses of nine floodplain meadow species to changing hydrological conditions. Plant Ecology , 201 , 589–598.
http://dx.doi.org/10.1007/s11258-008-9508-9

Laine , A. M. , Juurola , E. , Hájek , T. & Tuittila , E.-S. 2011. Sphagnum growth and ecophysiology during mire successsion. Oecologia , 167 , 1115–1125.
http://dx.doi.org/10.1007/s00442-011-2039-4

Lichtenthaler , H. K. , Buschmann , C. & Knapp , M. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica , 43 , 379–393.
http://dx.doi.org/10.1007/s11099-005-0062-6

Lovelock , C. E. , Jackson , A. E. , Melick , D. R. & Seppelt , R. D. 1995. Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiology , 109 , 955–961.

Lüttge , U. , Meirelles , S. T. & de Mattos , E. A. 2008. Strong quenching of chlorophyll fluorescence in the desiccated state in three poikilohydric and homoiochlorophyllous moss species indicates photo-oxidative protection on highly light-exposed rocks of a tropical inselberg. Journal of Plant Physiology , 165 , 172–181.
http://dx.doi.org/10.1016/j.jplph.2007.03.004

Marschall , M. & Proctor , M. C. F. 2004. Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a , chlorophyll b and total carotenoids. Annals of Botany , 94 , 593–603.
http://dx.doi.org/10.1093/aob/mch178

Maseyk , K. S. , Green , T. G. A. & Klinac , D. 1999. Photosynthetic responses of New Zealand Sphagnum species. New Zealand Journal of Botany , 37 , 155–165.
http://dx.doi.org/10.1080/0028825X.1999.9512621

Misra , A. N. , Misra , M. & Singh , R. 2012. Chlorophyll fluorescence in plant biology. In Biophysics (Misra , A. N. , ed.) , pp. 171–192. InTech Europe , Rijeka.
http://dx.doi.org/10.5772/1877

Öquist , G. , Chow , W. S. & Anderson , J. M. 1992. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta , 186 , 450–460.
http://dx.doi.org/10.1007/BF00195327

Proctor , M. C. F. 2000. Mosses and alternative adaptation to life on land. New Phytologist , 148 , 1–3.
http://dx.doi.org/10.1111/j.1469-8137.2000.00751.x

Proctor , M. C. F. 2003. Experiments on the effect of different intensities of desiccation on bryophyte survival , using chlorophyll fluorescence as an index of recovery. Journal of Bryology , 25 , 201–210.

Proctor , M. C. F. & Smirnoff , N. 2000. Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany , 51 , 1695–1704.
http://dx.doi.org/10.1093/jexbot/51.351.1695

Proctor , M. C. F. , Ligrone , R. & Duckett , J. G. 2007. Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Annals of Botany , 99 , 75–93.
http://dx.doi.org/10.1093/aob/mcl246

Rixen , C. & Mulder , C. P. H. 2005. Improved water retention links high species richness with increased productivity in arctic tundra moss communities. Oecologia , 146 , 287–299.
http://dx.doi.org/10.1007/s00442-005-0196-z

Robinson , S. A. , Wasley , J. , Popp , M. & Lovelock , C. E. 2000. Desiccation tolerance of three moss species from continental Antarctica. Australian Journal of Plant Physiology , 27 , 379–388.

Samsone , I. , Druva-Lūsīte , I. , Andersone , U. , Nečajeva , J. , Karlsons , A. & Ievinsh , G. 2009. Plasticity of a dune plant Alyssum gmelinii in response to sand burial in natural conditions. Acta Universitatis Latviensis , 763 , 125–136.

Strasser , R. J. , Tsimilli-Michael , M. & Srivastava , A. 2004. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (Papageorgiou , G. C. & Govindjee , eds) , pp. 321–362. Springer , Dordrecht.

Thach , L. B. , Shapcott , A. , Schmidt , S. & Critchley , C. 2007. The OJIP fast fluorescence rise characterizes Graptohyllum species and their stress responses. Photosynthesis Research , 94 , 423–436.
http://dx.doi.org/10.1007/s11120-007-9207-8

Zubek , S. , Turnau , K. , Tsimilli-Michael , M. & Strasser , R. J. 2009. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza , 19 , 113–123.
http://dx.doi.org/10.1007/s00572-008-0209-y

 
Back

Current Issue: Vol. 63, Issue 4, 2014




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December