headerpos: 9460
 
 
  Estonian Journal of Ecology

ISSN 1736-7549 (electronic)   ISSN 1736-602X (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences: Biology, Ecology
(ISSN 1406-0914)
Published since 1952
 

Estonian Journal of Ecology

ISSN 1736-7549 (electronic)   ISSN 1736-602X (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences: Biology, Ecology
(ISSN 1406-0914)
Published since 1952
 

Publisher
Journal Information
» Abstractring/Indexing
List of Issues
» 2014
» 2013
Vol. 62, Issue 4
Vol. 62, Issue 3
Vol. 62, Issue 2
Vol. 62, Issue 1
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other Journals
» Staff

Distribution of organic carbon in humic and granulodensimetric fractions of soil as influenced by tillage and crop rotation; pp. 53–69

(Full article in PDF format) doi: 10.3176/eco.2013.1.05


Authors

Inga Liaudanskiene, Alvyra Slepetiene, Aleksandras Velykis, Antanas Satkus

Abstract

It is widely believed that soil disturbance by tillage is a primary cause of the loss of soil organic carbon (SOC) and that substantial SOC sequestration can be accomplished by conversion from conventional ploughing to reduced tillage. The objective of our study was to find alterations of the organic C content in soil humic and granulodensimetric fractions depending on soil tillage and crop rotation. The field experiment was carried out at the Joniskelis Experimental Station of the Lithuanian Institute of Agriculture on a drained clay loam Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). Two technologies – reduced tillage (RT) and conventional tillage (CT) – were compared in crop rotations with different proportions of overwintering and spring crops (0%, 25%, 50%, 75%, and 100% overwintering crops). The results of 2004–2006 are presented. Tillage had a greater influence than crop rotation on all soil C fractions. RT promoted the formation of all fractions of humic acids and FA1 and FA3 fractions of fulvic acids in the entire plough layer. Increasing the proportion of overwintering crops in the rotation to 100% tended to strengthen this effect. The C content in particulate organic matter (POM), light fraction (LF), and both clay-sized sub-fractions, expressed per unit mass of soil, significantly increased under RT in the top 15 cm of soil. The introduction of overwintering crops into the rotation and increasing their proportion had a significant positive influence on C content in POM and LF in the whole plough layer.

Keywords

soil organic carbon, light fraction, particulate organic matter, clay fraction, humic acids, fulvic acids.

References

Arlauskienė , A. , Maikštėnienė , S. & Šlepetienė , A. 2008. Effect of cover crops and straw on the humic substances in the clay loam Cambisol. Agronomy Research , 8 , 397–402.

Arlauskienė , A. , Maikštėnienė , S. & Šlepetienė , A. 2011. Application of environmental protection measures for clay loam Cambisol used for agricultural purposes. Journal of Environmental Engineering and Landscape Management , 19(1) , 71–80.
http://dx.doi.org/10.3846/16486897.2011.557266

Baker , J. M. , Ochsner , T. E. , Venterea , R. T. & Griffis , T. J. 2007. Tillage and soil carbon sequestration – What do we really know? Agriculture , Ecosystems & Environment , 118 , 1–5.
http://dx.doi.org/10.1016/j.agee.2006.05.014

Baldock , J. A. & Skjemstad , J. O. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry , 31 , 697–710.
http://dx.doi.org/10.1016/S0146-6380(00)00049-8

Bruun , S. , Ǻgren , G. I. , Christensen , B. T. & Jensen , L. S. 2010. Measuring and modeling continuous quality distributions of soil organic matter. Biogeosciences , 7 , 27–41.
http://dx.doi.org/10.5194/bg-7-27-2010

Bučienė , A. , Šlepetienė , A. , Šimanskaitė , D. , Svirskienė , A. & Butkutė , B. 2003. Changes in soil properties under high- and low-input cropping systems in Lithuania. Soil Use and Management , 19 , 291–297.
http://dx.doi.org/10.1079/SUM2003209

Carter , M. R. 2002. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agronomy Journal , 94 , 38–47.
http://dx.doi.org/10.2134/agronj2002.0038

Causarano , H. J. , Franzluebbers , A. J. , Shaw , J. N. , Reeves , D. W. , Raper , R. L. & Wood , S. W. 2008. Soil organic carbon fractions and aggregation in the Southern Piedmont and Coastal Plain. Soil Science Society of America Journal , 72 , 221–230.
http://dx.doi.org/10.2136/sssaj2006.0274

Christensen , B. T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science , 52 , 345–353.
http://dx.doi.org/10.1046/j.1365-2389.2001.00417.x

Cotrufo , M. F. , Conant , R. T. & Paustian , K. 2011. Soil organic matter dynamics: land use , management and global change. Plant and Soil , 338 , 1–3.
http://dx.doi.org/10.1007/s11104-010-0617-6

FAO-UNESCO. 1997. Soil Map of the World. Revised Legend with Correlations and Updates. ISRIC , Wagening , Netherlands.

Franzluebbers , A. J. 2005. Greenhouse gas contributions and mitigation potential in agricultural regions of North America: introduction. Soil & Tillage Research , 83 , 1–8.
http://dx.doi.org/10.1016/j.still.2005.02.020

Franzluebbers , A. J. & Stuedemann , J. A. 2002. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA. Environmental Health and Pollution Control , 116 , 53–62.
http://dx.doi.org/10.1016/S0269-7491(01)00247-0

Franzluebbers , A. J. & Stuedemann , J. A. 2008. Early response of soil organic fractions to tillage and integrated crop-livestock production. Soil Science Society of America Journal , 72 , 613–625.
http://dx.doi.org/10.2136/sssaj2007.0121

Gregorich , E. G. , Beare , M. H. , McKim , U. F. & Skjemstad , J. O. 2006. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal , 70 , 975–985.
http://dx.doi.org/10.2136/sssaj2005.0116

Hayes , M. H. B. & Clapp , C. E. 2001. Humic substances: considerations of compositions , aspects of structure , and environmental influences. Soil Science , 166 , 723–737.
http://dx.doi.org/10.1097/00010694-200111000-00002

Hermle , S. , Anken , T. , Leifeld , J. & Weisskopf , P. 2008. The effect of the tillage system on soil organic carbon content under moist , cold-temperate conditions. Soil & Tillage Research , 98 , 94–105.
http://dx.doi.org/10.1016/j.still.2007.10.010

Hillel , D. 2009. The mission of soil science in a changing world. Journal of Plant Nutrition and Soil Science , 172 , 5–9.
http://dx.doi.org/10.1002/jpln.200800333

Janzen , H. H. , Campbell , C. A. , Brandt , S. A. , Lafond , G. P. & Townley-Smith , L. 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal , 56 , 1799–1806.
http://dx.doi.org/10.2136/sssaj1992.03615995005600060025x

Jones , M. B. & Donnelly , A. 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management , climate and elevated CO2. New Phytologist , 164 , 423–439.
http://dx.doi.org/10.1111/j.1469-8137.2004.01201.x

Kaiser , K. , Eusterhues , K. , Rumpel , C. , Guggenberger , G. & Kögel-Knabner , I. 2002. Stabilization of organic matter by soil minerals – investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science , 165 , 451–459.
http://dx.doi.org/10.1002/1522-2624(200208)165:4<451::AID-JPLN451>3.0.CO;2-B

Kögel-Knabner , I. , Ekschmitt , K. , Flessa , H. , Guggenberger , G. , Matzner , E. , Marschner , B. & von Lützow , M. 2008. An integrative approach of organic matter stabilization in temperate soils: linking chemistry , physics , and biology. Journal of Plant Nutrition and Soil Science , 171 , 5–13.
http://dx.doi.org/10.1002/jpln.200700215

Lal , R. 2009. Sequestering carbon in soils of arid ecosystems. Land Degradation and Development , 20 , 441–454.
http://dx.doi.org/10.1002/ldr.934

Lee , S. B. , Lee , C. H. , Jung , K. Y. , Park , K. D. , Lee , D. & Kim , P. J. 2009. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilizied paddy. Soil & Tillage Research , 104 , 227–232.
http://dx.doi.org/10.1016/j.still.2009.02.007

Leifeld , J. & Kögel-Knabner , I. 2005. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma , 124 , 143–155.
http://dx.doi.org/10.1016/j.geoderma.2004.04.009

Lichtfouse , E. , Chenu , C. , Baudin , F. , Leblond , C. , Da Silva , M. , Behar , F. et al. 1998. A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain bio­polymers: chemical and isotope evidence. Organic Geochemistry , 28 , 411–415.
http://dx.doi.org/10.1016/S0146-6380(98)00005-9

Marriott , E. E. & Wander , M. M. 2006. Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal , 70 , 950–959.
http://dx.doi.org/10.2136/sssaj2005.0241

Moran , K. K. , Six , J. , Horwath , W. R. & van Kassel , S. 2005. Role of mineral nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of America Journal , 69 , 1730–1736.
http://dx.doi.org/10.2136/sssaj2004.0301

Nikitin , B. A. 1999. Methods for soil humus determination. Agrokhimiya , 5 , 91–93 (in Russian).

Piccolo , A. 2002. The supramolecular structure of humic substances. A novel understanding of humus chemistry and application in soil science. Advances in Agronomy , 75 , 57–133.
http://dx.doi.org/10.1016/S0065-2113(02)75003-7

Ponomareva , V. V. & Plotnikova , T. A. 1980. Humus and Soil Formation. Nauka , Leningrad (in Russian).

Schulz , E. 2004. Influence of site conditions and management on different soil organic matter (SOM) pools. Archives of Agronomy and Soil Science , 50 , 33–47.
http://dx.doi.org/10.1080/03650340310001627577

Schulz , E. , Breulmann , M. , Boettger , T. , Wang , K. R. & Neue , H. U. 2011. Effect of organic matter input on functional pools of soil organic carbon in a long-term double rice crop experiment in China. European Journal of Soil Science , 62 , 134–143.
http://dx.doi.org/10.1111/j.1365-2389.2010.01330.x

Shaymuhametov , M. S. 1985. Use of physical fractionation methods to characterize soil organic matter. Eurasian Soil Science , 25 , 70–88.

Shaymuhametov , M. S. & Voronina , K. A. 1972. The fractionation method of soil organo–clay complexes using laboratory centrifuges. Agrokhimiya , 8 , 134–138 (in Russian).

Six , J. , Conant , R. T. , Paul , E. A. & Paustian , K. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil , 241 , 155–176.
http://dx.doi.org/10.1023/A:1016125726789

Six , J. , Bossuyt , H. , Degryze , S. & Denef , K. 2004. A history of research on the link between (micro)aggregates , soil biota , and soil organic matter dynamics. Soil & Tillage Research , 79 , 7–31.
http://dx.doi.org/10.1016/j.still.2004.03.008

Slepetiene , A. & Slepetys , J. 2005. Status of humus in soil under various long-term tillage systems. Geoderma , 127 , 207–215.
http://dx.doi.org/10.1016/j.geoderma.2004.12.001

Slepetiene , A. , Liaudanskiene , I. , Slepetys , J. & Velykis , A. 2010. The influence of reduced tillage , winter crops and ecologically managed long-term mono- and multi-component swards on soil humic substances. Chemistry and Ecology , 26 , 97–109.
http://dx.doi.org/10.1080/02757540.2010.501029

Slepetiene , A. , Slepetys , J. , Liaudanskiene , I. , Kadziuliene , Z. , Velykis , A. & Adamovics , A. 2011. Changes of soil organic carbon and mobile humic acids in response to different agricultural management. Agraarteadus: Journal of Agricultural Science , 2 , 64–70.

Slepetys , J. & Slepetiene , A. 2012. Response of soil nitrogen and carbon to organic management of legume swards. Žemdirbystė = Agriculture , 99 , 9–16.

Smith , P. , Bhogal , A. , Eddington , P. , Black , H. , Lilly , A. , Barracluogh , D. et al. 2010. Con­sequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain. Soil Use and Management , 26 , 381–398.
http://dx.doi.org/10.1111/j.1475-2743.2010.00283.x

Svobodova , O. , Jančiková , J. , Horáček , J. , Liebhard , P. & Čechová , V. 2010. Changes of soil organic matter under minimum tillage in different soil-climatic conditions. Soil and Water Research , 5 , 146–152.

Tarakanovas , P. & Raudonius , S. 2003. The statistical analysis of agronomic research data using the software programs Anova , Stat , Split-Plot from package Selekcija and Irristat. Akademija , Kauno r. (in Lithuanian).

Tripol¢skaya , L. N. , Romanovskaya , D. K. & Shlepetene , A. 2008. Humus status of Soddy-Podzolic soil upon application of different green manures. Eurasian Soil Science , 41 , 997–1005.

Velykis , A. , Satkus , A. & Šlepetienė , A. 2005. Effect of sustainable soil and crop management on humus changes. Latvijas Universitates Raksti , 692 , 165–174.

Weil , R. R. , Islam , K. R. , Stine , M. A. , Gruver , J. B. & Samson-Liebig , S. E. 2003. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture , 18 , 3–17.
http://dx.doi.org/10.1079/AJAA2003003

West , T. O. & Post , W. M. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal , 66 , 1930–1946.
http://dx.doi.org/10.2136/sssaj2002.1930

Wilts , A. R. , Reicosky , D. C. , Allmaras , R. R. & Clapp , C. E. 2004. Long-term corn residue effects. Soil Science Society of America Journal , 68 , 1342–1351.
http://dx.doi.org/10.2136/sssaj2004.1342

 
Back

Current Issue: Vol. 63, Issue 4, 2014




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December