ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Effect of spring oilseed rape crop density on plant root biomass and soil enzymes activity; pp. 70–78
PDF | doi: 10.3176/eco.2013.1.06

Authors
Rita Čepulienė, Aušra Marcinkevičienė, Rimantas Velička, Robertas Kosteckas, Rita Pupalienė
Abstract

A field experiment was carried out at the Experimental Station of the Aleksandras Stulginskis University in 2011 with the objective to establish the influence of spring oilseed rape (Brassica napus L.) crop density (50–100, 100–150, 150–200, 200–250, 250–300, 300–350, 350–400, 400–450 plants m–2) on plant root biomass and soil enzymes urease and saccharase activity.

It was found that the highest plant root biomass in the 0–10 and 10–20 cm soil layers was formed at a plant density of 100–150 plants m–2. With rape crop density increasing from 150 to 450 plants m–2, a decreasing trend of plant root biomass in both soil layers was detected. Statistically significant dependencies were determined between the dry biomass of oilseed rape roots in the 0–10 cm soil layer and the content of potassium in the soil (r = 0.76, P < 0.05), and between the dry biomass of rape roots in the 10–20 cm soil layer and soil pH (r = 0.74, P < 0.05). With increasing rape crop density, compared with the thinnest crop, the activity of urease in the soil did not change significantly. At a rape crop density of more than 100 plants m–2 the activity of saccharase significantly increased (by 31–56%) in comparison with saccharase activity in the thinnest crop. The soil urease activity depended on the spring rape crop density (r = 0.81, P < 0.05) and the content of available phosphorus (r = 0.75, P < 0.05). The soil saccharase activity was influenced by the rape crop density (r = 0.79, P < 0.05) and soil pH (r = 0.72, P < 0.05).

References

Acosta-Martinez, V., Zobeck, T. M., Gill, T. E. & Kennedy, A. C. 2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils, 38, 216–227.
http://dx.doi.org/10.1007/s00374-003-0626-1

Bandick, A. K. & Dick, R. P. 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471–1479.
http://dx.doi.org/10.1016/S0038-0717(99)00051-6

Barraclough, P. B. 1989. Root growth, macro-nutrient uptake dynamics and soil fertility require­ments of a high-yielding winter oilseed rape crop. Plant & Soil, 119, 59–70.
http://dx.doi.org/10.1007/BF02370269

Burns, R. G. & Dick, R. P. 2005. Enzymes in the Environment. Activity, Ecology and Applications. Taylor & Francis, New York.

Chunderova, A. 1973. Fermentativnaya aktivnost¢ dernovo-podzolistykh pochv Severo Zapadnoj zony [Fermentation Activity of Sod-Podzolic Soils of the North-Western Zone]. Abstract of thesis for the degree of Candidate of Sciences. Tallinn (in Russian).

Chung, H., Zak, D. R., Reich, P. B. & Ellswoth, D. S. 2007. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 13, 980–989.
http://dx.doi.org/10.1111/j.1365-2486.2007.01313.x

Doran, J. W. & Zeiss, M. R. 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3–11.
http://dx.doi.org/10.1016/S0929-1393(00)00067-6

Durieux, R. P., Kamprath, E. J., Jackson, W. A. & Moll, R. H. 1994. Root distribution of corn: the effect of nitrogen fertilization. Journal of Agronomy, 86, 958–962.
http://dx.doi.org/10.2134/agronj1994.00021962008600060006x

Gale, W. J. & Cambardella, C. A. 2000. Carbon dynamics of surface residue- and root-derived organic matter under simulated no-till. Soil Science Society of America Journal, 64, 190–195.
http://dx.doi.org/10.2136/sssaj2000.641196x

Gianfreda, L., Rao, M. A., Piotrowska, A., Palumbo, G. & Colombo, C. 2005. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341, 265–279.
http://dx.doi.org/10.1016/j.scitotenv.2004.10.005

Govahi, M. & Saffari, M. 2006. Effect of potassium and sulphur fertilizers on yield, yield components and seed quality of spring canola (Brassica napus L.) seed. Journal of Agronomy, 5, 577–582.
http://dx.doi.org/10.3923/ja.2006.577.582

Kandeler, E., Palli, S., Stemmer, M. & Gerzabek, M. H. 1999. Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 31, 1253–1264.

http://dx.doi.org/10.1016/S0038-0717(99)00041-3

Kheyrodin, H. & Antoun, H. 2008. Tillage and manure effect on soil microbial biomass and respiration and on enzyme activities. In 5th International Symposium ISMOM, p. 16. Pucón, Chile.

Kjellström, C. G. & Kirchmann, H. 1994. Dry matter production of oilseed rape (Brassica napus) with special reference to the root system. The Journal of Agricultural Science, 123, 327–332.
http://dx.doi.org/10.1017/S0021859600070325

Kong, L., Wang, Y.-B., Zhao, L.-N. & Chen, Z.-H. 2009. Enzyme and root activities in surface-flow constructed wetland. Chemosphere, 76, 601–608.
http://dx.doi.org/10.1016/j.chemosphere.2009.04.056

Kuang, R. B., Hong, L., Xiang-Long, Y. & Yin-Shan, D. 2005. Phosphorus and nitrogen interaction in field-grown soybean as related to genetic attributes of root morphological and nodular traits. Journal of Integrative Plant Biology, 47, 549–559.
http://dx.doi.org/10.1111/j.1744-7909.2005.00072.x

Lapinskienė, L. 1993. Lietuvos agrolandšafto ekosistemų žolinių bendrijų požeminių organų ekomorfologinis, kiekybinis ir fitocenotinis įvertinimas: gamtos mokslų habilitacinio darbo referatas. Vilnius (in Lithuanian).

Liakas, V., Malinauskas, D. & Šiuliauskas, A. 2006. Žieminių rapsų pasėlio tankumo įtaka jų augalų produktyvumui ir derliui. Žemės ūkio mokslai, 2, 18–23 (in Lithuanian).

Liu, X.-M., Li, Qi., Liang, W.-J. & Jiang, Y. 2008. Distribution of soil enzyme activities and microbial biomass along a latitudinal gradient in farmland of Songliao Plain, Northeast China. Pedosphere, 18, 431–440.
http://dx.doi.org/10.1016/S1002-0160(08)60034-X

Marcinkevičienė, A., Velička, R. & Kosteckas, R. 2011. Dirvos fermentų aktyvumo palyginimas skirtingo tankumo vasarinių rapsų agrocenozėse. Iš Žmogaus ir gamtos sauga: tarptautinė mokslinė-praktinė konferencija, pp. 131–134. Akademija, Kaunas (in Lithuanian).

Melero, S., Vanderlinden, K., Ruiz, J. C. & Madejon, E. 2008. Long-term effect on soil biochemical status of a Vertisol under conservation tillage system in semi-arid Mediterranean conditions. European Journal of Soil Biology, 44, 437–442.
http://dx.doi.org/10.1016/j.ejsobi.2008.06.003

Nannipieri, P. 1994. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In Soil Biota: Management in Sustainable Farming Systems (Pankhurst, C. E., Doube, B. M., Gupta, V. V. S. R. & Grace, P. R., eds), pp. 238–244. CSIRO, Australia.

Neumann, G. & Martinoia, E. 2002. Cluster roots – an underground adaptation for survival in extreme environments. Trends in Plant Science, 7, 162–167.
http://dx.doi.org/10.1016/S1360-1385(02)02241-0

Niemi, R. M., Vepsalainen, M., Wallenius, K., Simpanen, S., Alakukku, L. & Pietola, L. 2005. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Applied Soil Ecology, 30, 113–125.
http://dx.doi.org/10.1016/j.apsoil.2005.02.003

Pietola, L. & Alakukku, L. 2005. Root growth dynamics and biomass input by Nordic annual field crops. Agriculture, Ecosystems & Environment, 108, 135–144.
http://dx.doi.org/10.1016/j.agee.2005.01.009

Reboreda, R. & Caçador, I. 2008. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Marine Environmental Research, 65, 77–84.
http://dx.doi.org/10.1016/j.marenvres.2007.09.001

Robinson, D. & Vuuren, M. M. I. V. 1998. Responses of wild plants nutrients patches in relation to growth rate and life span. In Variation in Plant Growth (Labbers, H., Poorter, H. & Vuuren, M. M. I. V., eds), pp. 237–257. Bakhuys, Leiden, The Netherlands.

Roldan, A., Salinas-Garcia, J. R., Alguacil, M. M., Diaz, E. & Caravaca, F. 2005. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under sub­tropical contitions. Geoderma, 129, 178–185.
http://dx.doi.org/10.1016/j.geoderma.2004.12.042

Schimner, F. & Sonnleitner, R. 1996. Bodenökologie: Mikrobiologie und Bodenenzymatik. Springer, Berlin (in German).
http://dx.doi.org/10.1007/978-3-642-80175-4

Svirskienė, A. 1999. Antropogeniniam poveikiui jautrių dirvožemio mikrobiologinio aktyvumo ir jo derlingumo indikatorių įvertinimas. Ekologija, 3, 90–94 (in Lithuanian).

Svirskienė, A., Šlepetienė, A. & Bučienė, A. 1997. Microbiological processes and humus quality while applying organic and mineral fertilizers. In Ecological Effects of Microorganism Action: Material of International Conference, pp. 213–217. Vilnius.

Tarakanovas, P. & Raudonius, S. 2003. Agronominių tyrimų duomenų statistinė analizė taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT iš paketo Selekcija ir Irristat. Akademija, Kaunas (in Lithuanian).

Wang, J. B., Chen, Z. H., Chen, L. J., Zhu, A. N. & Wu, Z. J. 2011. Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant, Soil & Environment, 6, 251–257.

Zakarauskaitė, D., Grigaliūnienė, K., Kučinskas, J. & Valikonytė, V. 2005. Ilgalaikio tręšimo organinėmis ir mineralinėmis trąšomis poveikis dirvožemio biologiniam aktyvumui. Vagos, 68, 44 (in Lithuanian).

Zakarauskaitė, D., Vaišvila, Z., Motuzas, A., Grigaliūnienė, K., Buivydaitė, V. V., Vaisvalavičius, R. & Butkus, V. 2008. The influence of long-term application of mineral fertilizers on the biological activity of Cambisols. Ekologija, 54, 173–178.
http://dx.doi.org/10.2478/V10055-008-0027-8

Back to Issue

Back issues