ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Conceptual model of groundwater quality for the monitoring and management of the Voronka groundwater body, Estonia; pp. 328–339
PDF | doi: 10.3176/earth.2012.4.11

Authors
Andres Marandi, Enn Karro, Valle Raidla, Rein Vaikmäe
Abstract

A fundamental knowledge of processes that control groundwater composition is required for informed management of water quality. The Voronka groundwater body in northeastern Estonia represents a good example of a complicated, overexploited groundwater system where conceptual understanding of baseline quality and governing hydrogeochemical processes can support sustainable aquifer management. A conceptual understanding or conceptual model is a simplified representation or a working understanding of the real hydrogeological system and its processes. The baseline chemical composition of the Voronka ground­water body was formed during the last glaciations, when glacial meltwater intruded into water-bearing rocks. Two main processes that can change Voronka groundwater body quality at the present day are: (1) seawater intrusion and (2) water exchange between buried valleys and formation’s groundwater. Future monitoring and management should focus on changes in the natural composition of groundwater caused by abstraction. The HCO3/Cl value is the best parameter to describe the fluctuations in natural back­ground chemistry in the Voronka groundwater body and to assess significant trends induced by abstraction. In case of the discovered trends, a suite of isotope methods, especially 14C, 3H, δ2H, δ18O and δ13C, can be used to detect whether the intrusion of seawater or exchange of water with buried valleys is taking place.

References

Appelo, C. A. J. & Postma, D. 1999. Geochemistry, Ground­water and Pollution. Balkema, Rotterdam, 668 pp.

Clark, I. & Fritz, P. 1997. Environmental Isotopes in Hydro­geology. Lewis Publishers, New York, 328 pp.

Custodio, E. 2002. Aquifer overexploitation: what does it mean? Hydrogeology Journal, 10, 254–277.
http://dx.doi.org/10.1007/s10040-002-0188-6

[EGS] Estonian Geological Survey. 1998. Groundwater State 1997–1998. EGS publication, Tallinn, 112 pp. [in Estonian].

Epstein, S. & Mayeda, T. 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.
http://dx.doi.org/10.1016/0016-7037(53)90051-9

Giménez, E. & Morell, I. 1997. Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environmental Geology, 29, 118–131.
http://dx.doi.org/10.1007/s002540050110

Hem, J. D. 1985. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey, Water Supply Paper 2254; USGS Publishing Service Center [Last edited September 2005]. Available from: http://pubs.usgs.gov/wsp/wsp2254/ [accessed 6 Sept. 2012].

Karise, V. 1997. Composition and properties of groundwater under natural conditions. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 152–156. Estonian Academy Publishers, Tallinn.

Lee, J.-Y. & Song, S.-H. 2007. Evaluation of groundwater quality in coastal areas: implications for sustainable agri­culture. Environmental Geology, 52, 1231–1242.

Marandi, A. 2007. Natural chemical composition of ground­water as a basis for groundwater management in Cambrian–Vendian aquifer system in Estonia. Dissertationes Geologicae Universitatis Tartuensis, 21. Tartu Ülikooli Kirjastus, Tartu.

Marandi, A., Karro, E. & Puura, E. 2004. Barium anomaly in the Cambrian–Vendian aquifer system in North Estonia. Environmental Geology, 47, 132–139.
http://dx.doi.org/10.1007/s00254-004-1140-y

[ME] Ministry of the Environment. 2005. Compliance with the Requirements of Article 5 of the Water Framework Directive in Estonia. Summary Report of River Basin Districts. West-Estonian River Basin District, East-Estonian River Basin District, Koiva River Basin District. Ministry of the Environment, Tallinn, 46 pp.

Meinzer, O. E. 1945. Problems of the perennial yield of artesian aquifers: Econ. Geology, 40, 159–163.
http://dx.doi.org/10.2113/gsecongeo.40.3.159

Mens, K. & Pirrus, E. 1997a. Vendian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 35–38. Estonian Academy Publishers, Tallinn.

Mens, K. & Pirrus, E. 1997b. Cambrian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedu­mäe, A., eds), pp. 39–51. Estonian Academy Publishers, Tallinn.

Mokrik, R. 1997. The Palaeohydrogeology of the Baltic Basin. Tartu University Press, Tartu, 138 pp.

Perens, R. & Vallner, L. 1997. Water-bearing formation. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 137–145. Estonian Academy Publishers, Tallinn.

Petalas, C. P. & Diamantis, I. B. 1999. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeology Journal, 7, 305–316.
http://dx.doi.org/10.1007/s100400050204

Pulido-Leboeuf, P. 2004. Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Applied Geochemistry, 19, 1517–1527.
http://dx.doi.org/10.1016/j.apgeochem.2004.02.004

Punning, J. M., Toots, M. & Vaikmäe, R. 1987. Oxygen-18 in Estonian natural waters. Isotopenpraxis, 17, 27–31.

Raidla, V. 2010. Chemical and isotope evolution of ground­water in the Cambrian–Vendian aquifer system in Estonia. Dissertationes Geologicae Universitatis Tartuensis, 28, Tartu Ülikooli Kirjastus, Tartu.

Raidla, V., Kirsimäe, K., Bityukova, L., Jõeleht, A., Shogenova, A. & Šliaupa, S. 2006. Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the northern Baltic Sedimentary Basin. Geological Quarterly, 50, 11–22.

Raidla, V., Kirsimäe, K., Vaikmäe, R., Jõeleht, A., Karro, E., Marandi, A. & Savitskaja, L. 2009. Geochemical evolution of groundwater in the Cambrian–Vendian aquifer system of the Baltic Basin. Chemical Geology, 258, 219–231.
http://dx.doi.org/10.1016/j.chemgeo.2008.10.007

Richter, B. C., Kreitler, C. W. & Bledsoe, B. E. 1993. Geo­chemical Techniques for Identifying Sources of Groundwater Salinization. CRC, New York, 272 pp.

Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. 1992. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science, 258, 981–985.
http://dx.doi.org/10.1126/science.258.5084.981

Savitski, L., Viigand, A., Belkina, V. & Jaštšuk, S. 1993. Põhja­veevaru hinnang Tallinna veehaaretel. Põhjavee otsing Tallinna ja ümbruse veevarustuseks [Hydrogeological Investigations of the Tallinn Area and Safe Yield Calculations of Tallinn Water Intakes]. Geological Survey of Estonia, Tallinn, 402 pp. [in Estonian].

Scheidleder, A., Grath, J. & Quevauviller, P. 2008. Groundwater characterization and risk assessment in the context of the EU Water Framework Directive. In Groundwater Science and Policy. An international Overview (Quevauviller, P., ed.), pp. 177–192. RSC Publishing, London.

Tavast, E. 1997. Bedrock topography. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 252–255. Estonian Academy Publishers, Tallinn.

Theis, C. V. 1940. The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Engineering, 10, 277–280.

Vaikmäe, R. & Vallner, L. 1989. Oxygen-18 in Estonian groundwaters. In Isotopes in Nature, Fifth Working Meeting, Abstracts (Wand, U., ed.), pp. 161–162, Leipzig.

Vaikmäe, R., Vallner, L., Loosli, H. H., Blaser, P. C. & Juillard-Tardent, M. 2001. Palaeogroundwater of glacial origin in the Cambrian–Vendian aquifer of northern Estonia. In Palaeowaters of Coastal Europe: Evolution of Groundwater Since the Late Pleistocene (Edmunds, W. M. & Milne, C. J., eds), Geological Society of London Special Publication, 189, 17–27.

Vaikmäe, R., Kaup, E., Marandi, A., Martma, T., Raidla, V. & Vallner, L. 2008. The Cambrian–Vendian aquifer, Estonia. In The Natural Baseline Quality of Groundwater (Edmunds, W. M. & Shand, P., eds), pp. 353–371. Blackwell Publishing, Oxford, UK.
http://dx.doi.org/10.1002/9781444300345.ch16

Vaher, R., Miidel, A., Raukas, A. & Tavast, E. 2010. Ancient buried valleys in the city of Tallinn and adjacent area. Estonian Journal of Earth Sciences, 59, 37–48.
http://dx.doi.org/10.3176/earth.2010.1.03

Vallner, L. 2003. Hydrogeological model of Estonia and its applications. Proceedings of the Estonian Academy of Sciences, Geology, 52, 179–192.

Yezhova, M., Polyakov, V., Tkachenko, A., Savitski, L. & Belkina, V. 1996. Palaeowaters of North Estonia and their influence on changes of resources and the quality of fresh groundwaters of large coastal water supplies. Geologija, 19, 37–40.

Back to Issue