headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
Vol. 29, Issue 4
Vol. 29, Issue 3
Vol. 29, Issue 2
Vol. 29, Issue 1
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

AN ATR-FTIR PROCEDURE FOR QUANTITATIVE ANALYSIS OF MINERAL CONSTITUENTS AND KEROGEN IN OIL SHALE; pp. 344–356

(Full article in PDF format) doi: 10.3176/oil.2012.4.05


Authors

SUJEEWA S. PALAYANGODA, QUOC P. NGUYEN

Abstract

Principal component regression (PCR) was used to develop calibra­tion and prediction models for determination of mineral content of complex mineral mixtures by utilizing attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra. The typical constituents of oil shale such as dawsonite, nahcolite, quartz, dolomite, illite, albite, analcime, and kerogen were used to prepare samples to record mid-infrared (IR) spectra. The specified values of dawsonite, nahcolite, quartz, dolomite and kerogen were in good agreement with measured data.

Keywords

ATR-FTIR, PCR, oil shale, pyrolysis, chemometrics.

References

  1. Adams , M. J. , Awaja , F. , Bhargava , S. , Grocott , S. , Romeo , M. Prediction of oil yield from oil shale minerals using diffuse reflectance infrared Fourier transform spectroscopy. Fuel , 2005 , 84(14–15) , 1986–1991.
http://dx.doi.org/10.1016/j.fuel.2005.04.011

  2. Karabakan , A. , Yurum , Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel , 1998 , 77(12) , 1303–1309.
http://dx.doi.org/10.1016/S0016-2361(98)00045-3

  3. Evans , R. J. , Felbeck Jr. , G. T. High temperature simulation of petroleum forma­tion - II. Effect of inorganic sedimentary constituents on hydrocarbon formation. Org. Geochem. , 1983 , 4(3–4) , 145–152.
http://dx.doi.org/10.1016/0146-6380(83)90035-9

  4. Ballice , L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol. , 2005 , 86(6) , 673–690.
http://dx.doi.org/10.1016/j.fuproc.2004.07.003

  5. Vagenas , N. V. , Gatsouli , A. , Kontoyannis , C. G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta , 2003 , 59(4) , 831–836.
http://dx.doi.org/10.1016/S0039-9140(02)00638-0

  6. Solomon , P. R. , Mikins , F. P. Use of Fourier Transform infrared spectroscopy for determining oil shale properties. Fuel , 1980 , 59(12) , 893–896.
http://dx.doi.org/10.1016/0016-2361(80)90040-X

  7. Settle , F. A. Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall PTR , New Jersey , 1997.

  8. Varmuza , K. , Filzmoser , P. Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press , New York , 2009.
http://dx.doi.org/10.1201/9781420059496

  9. Kokot , S. , Grigg , M. , Panayiotou , H. , Phuong , T. D. Data interpretation by some common chemometrics methods. Electroanal. , 1998 , 10(16) , 1081–1088.
http://dx.doi.org/10.1002/(SICI)1521-4109(199811)10:16<1081::AID-ELAN1081>3.0.CO;2-X

10. Rajeshwar , K. , Jones , D. B. , DuBow , J. B. Characterization of oil shales by differential scanning calorimetry. Anal. Chem. , 1981 , 53(1) , 121–122.
http://dx.doi.org/10.1021/ac00224a031

11. Gemperline , P. Practical Guide to Chemometrics. CRC Press , Boca Raton , 2006.
http://dx.doi.org/10.1201/9781420018301

12. Martens , H. , Naes , T. Multivariate Calibration. John Wiley & Sons , New York , 1989.

13. Tuddenham , W. M. , Lyon , R. J. P. Infrared techniques in the identification and measurement of minerals. Anal. Chem. , 1960 , 32(12) , 1630–1634.
http://dx.doi.org/10.1021/ac60168a026

14. Estep , P. A. , Kovach , J. J. , Karr , C. Quantitative infrared multicomponent determina­tion of minerals occurring in coal. Anal. Chem. , 1968 , 40(2) , 358–363.
http://dx.doi.org/10.1021/ac60258a006

15. Morris , R. J. Infrared spectrophotometric analysis of calcium sulfate hydrates using internally standardized mineral oil mulls. Anal. Chem. , 1963 , 35(10) , 1489–1492.
http://dx.doi.org/10.1021/ac60203a019

16. Dachille , F. , Roy , R. High-pressure phase transformations in laboratory mechanical mixers and mortars. Nature , 1960 , 186 , 34–71.
http://dx.doi.org/10.1038/186034a0

17. Crews , P. , Rodriguez , J. , Jaspars , M. Organic Structure Analysis. Oxford University Press , New York , 1998.

18. Benoudjit , N. , Cools , E. , Meurens , M. , Verleysen , M. Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models. Chemom. Intell. Lab. Syst. , 2004 , 70(1) , 47–53.
http://dx.doi.org/10.1016/j.chemolab.2003.10.008

19. McQueen , D. H. , Wilson , R. , Kinnunen , A. Near and mid-infrared photo­acoustic analysis of principal components of foodstuffs. Trends Anal. Chem. , 1995 , 14(10) , 482–492.
http://dx.doi.org/10.1016/0165-9936(95)90809-2

 
Back

Current Issue: Vol. 35, Issue 2, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December