ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Přídolí carbon isotope trend and upper Silurian to lowermost Devonian chemostratigraphy based on sections in Podolia (Ukraine) and the East Baltic area; pp. 162–180
PDF | doi: 10.3176/earth.2012.3.03

Authors
Dimitri Kaljo, Tõnu Martma, Volodymyr Grytsenko, Antanas Brazauskas, Donatas Kaminskas
Abstract

Insufficient knowledge of carbon isotope cycling in the latest Silurian initiated the study of two regions at the western and southwestern margins of Baltica in order to obtain a more complete picture about the carbon isotope trend through the Přídolí. Shallow and open shelf carbonate rocks of the Dniester River outcrops and Kotuzhiny core in Podolia and deep shelf rocks of the East Baltic area, especially the Lithuanian cores, were studied for bulk-rock isotope analysis. The data sets of both regions begin with the mid-Ludfordian excursion and include also some part of the lowermost Devonian. The data show a new minor twin positive δ13C excursion (peak values 0.8–1.7‰) in the upper Ludfordian. The Přídolí carbon isotope trend begins with a low of negative δ13C values, succeeded by the lower to middle Přídolí ‘stability’ interval (variable values below or close to 0‰ with a slight rising trend). The upper Přídolí begins with a medium to major excursion (peak values 2.3–4.5‰), which reflects the pattern of the carbon isotope trend on the west of the Baltica palaeocontinent. Its wider significance awaits confirmation from observations elsewhere. The carbon isotope excursion at the Silurian–Devonian boundary, named here the SIDE excursion (its δ13C values range from 1.6‰ in deep shelf settings to 3.8‰ in shallower ones and 4.5‰ in brachiopod shells), has been traced on several continents, and now also in Baltica. This excursion can serve as a well-dated global chemostratigraphic correlation tool. The shape of the excursion indicates the completeness of the studied section. We conclude that carbon isotope chemostratigraphy may contribute to subdividing the Přídolí Series into stages and that Baltica sensu lato seems to be the right place for such a development.

References

Abushik, A. F. 1983. On the interregional correlation of the Silurian of Dniester area based on ostracodes. Doklady Akademii nauk SSSR, 273, 1179–1183 [in Russian].

Abushik, A. F., Berger, A. Ya., Koren, T. N., Modzalevskaya, T. L., Nikiforova, O. I. & Predtechensky, N. N. 1985. The fourth series of the Silurian System in Podolia. Lethaia, 18, 125–146.
http://dx.doi.org/10.1111/j.1502-3931.1985.tb00691.x

Andrew, A. S., Hamilton, P. J., Mawson, R., Talent, J. A. & Whitford, D. J. 1994. Isotopic correlation tools in the mid-Paleozoic and their relation to extinction events. Australian Petroleum Exploration Association Journal, 34, 268–277.

Azmy, K., Veizer, J., Bassett, M. G. & Copper, P. 1998. Oxygen and carbon isotopic composition of Silurian brachiopods: implications for coeval seawater and glaciations. Geological Society of America, Bulletin, 110, 1499–1512.
http://dx.doi.org/10.1130/0016-7606(1998)110<1499:OACICO>2.3.CO;2

Bassett, M. G., Kaljo, D. & Teller, L. 1989. The Baltic region. In A Global Standard for the Silurian System (Holland, C. H. & Bassett, M. G., eds), National Museum of Wales, Geological Series, 9, 158–170.

Bergström, S. M., Saltzman, M. R. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine, 143, 657–678.
http://dx.doi.org/10.1017/S0016756806002469

Boucot, A. J. & Lawson, J. D. (eds). 1999. Paleocommunities: A Case Study from the Silurian and Lower Devonian. World and Regional Geology Series, 11. Cambridge University Press, Cambridge, 895 pp.

Brazauskas, A. 1993. Silurian Conodonts and Biostratigraphy of Lithuania. Dissertation. Vilnius University, 116 pp.

Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T. & Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America, Bulletin, 115, 89–104.
http://dx.doi.org/10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2

Buggisch, W. & Joachimski, M. M. 2006. Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeography, Palaeoclimatology, Palaeo­ecology, 240, 68–88.
http://dx.doi.org/10.1016/j.palaeo.2006.03.046

Calner, M., Jeppsson, L. & Munnecke, A. 2004. The Silurian of Gotland – Part I: Review of the stratigraphic frame­work, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger Geologische Abhandlungen Sonderband, 5, 113–131.

Corfield, R. M., Siveter, D. J. Cartlidge, J. E. & McKerrow, W. S. 1992. Carbon isotope excursion near the Wenlock–Ludlow (Silurian) boundary in the Anglo-Welsh area. Geology, 20, 371–374.
http://dx.doi.org/10.1130/0091-7613(1992)020<0371:CIENTW>2.3.CO;2

Cramer, B. D., Brett, C. E., Melchin, M. J., Männik, P., Kleffner, M. A., McLaughlin, P. I., Loydell, D. K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F. R. & Saltzman, M. R. 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chrono­stratigraphic units and δ13Ccarb chemostratigraphy. Lethaia, 44, 185–202.
http://dx.doi.org/10.1111/j.1502-3931.2010.00234.x

Drygant, D. M. 1984. Korrelyatsiya i konodonty silurijskikh–nizhnedevonskikh otlozhenij Volyno–Podolii [Correlation and Conodonts of Silurian–Lower Devonian Deposits in Volyno–Podolia]. Naukova Dumka, Kyiv, 192 pp. [in Russian].

Einasto, R., Abushik, A., Kaljo, D., Koren, T., Modzalevskaya, T. & Nestor, H. 1986. Silurian sedimentation and fauna of the East Baltic and Podolian marginal basins, a comparison. In Theory and Practice of Ecostratigraphy (Kaljo, D. & Klaamann, E., eds), pp. 65–72, 269. Institute of Geology, Academy of Sciences of the Estonian S.S.R., Valgus, Tallinn [in Russian, with English summary].

Flügel, H. W., Hermann, J., Schönlaub, H. P. & Vai, G. B. 1977. Carnic Alps. In The Silurian–Devonian Boundary (Martinsson, A., ed.), IUGS, Series A, 5, 126–142.

Gailite, L. K. 1986. The Late Silurian ostracode communities of Latvia. In Theory and Practice of Ecostratigraphy (Kaljo, D. & Klaamann, E., eds), pp. 110–115, 271. Institute of Geology, Academy of Sciences of the Estonian S.S.R., Valgus, Tallinn [in Russian, with English summary].

Gailite, L. K., Ulst, R. Ž. & Yakovleva, V. I. 1987. Strato­tipicheskie i tipovye razrezy silura Latvii [Stratotype and Type Sections of the Silurian of Latvia]. Zinatne, Riga, 184 pp. [in Russian].

Gritsenko, V. P., Istchenko, A. A., Konstantinenko, L. I. & Tsegelnjuk, P. D. 1999. Animal and plant communities of Podolia. In Paleocommunities: A Case Study from the Silurian and Lower Devonian (Boucot, A. J. & Lawson, J. D., eds), World and Regional Geology Series, 11, 462–487.

Heath, R. J., Brenchley, P. J. & Marshall, J. D. 1998. Early Silurian carbon and oxygen stable-isotope stratigraphy of Estonia: implications for climate change. In Silurian Cycles – Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes (Landing, E. & Johnson, M. E., eds), New York State Museum Bulletin, 491, 313–327.

Hints, L., Hints, O., Kaljo, D., Kiipli, T., Männik, P., Nõlvak, J. & Pärnaste, H. 2010. Hirnantian (latest Ordovician) bio- and chemostratigraphy of the Stirnas-18 core, western Latvia. Estonian Journal of Earth Sciences, 59, 1–24.
http://dx.doi.org/10.3176/earth.2010.1.01

Hladíková, J., Hladil, J. & Kříbek, B. 1997. Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic). Palaeo­geography, Palaeoclimatology, Palaeoecology, 132, 225–241.
http://dx.doi.org/10.1016/S0031-0182(97)00062-X

Hladil, J. 1991. Evaluation of the sedimentary record in the Silurian–Devonian boundary stratotype at Klonk (Barrandian area, Czechoslovakia). Newsletters on Strati­graphy, 25, 115–125.

Hladil, J. 1992. Are there turbidites in the Silurian/Devonian Boundary Stratotype? (Klonk near Suchomasty, Barrandian, Czechoslovakia). Facies, 26, 35–54.
http://dx.doi.org/10.1007/BF02539792

Huff, W. D., Bergström, S. M. & Kolata, D. R. 2000. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine. Journal of the Geological Society of London, 157, 493–504.
http://dx.doi.org/10.1144/jgs.157.2.493

Kaljo, D. (ed.). 1987. Resheniya mezhvedomstvennogo strati­graficheskogo soveshchaniya po ordoviku i siluru Vostochno-Evropejskoj platformy 1984 s regional¢nymi stratigraficheskimi skhemami [Decisions of the Inter­departmental Conference on the Ordovician and Silurian of the East European Platform in 1984 with a Set of Regional Stratigraphical Schemes]. VSEGEI, Leningrad, 114 pp. [in Russian].

Kaljo, D., Kiipli, T. & Martma, T. 1997. Carbon isotope event markers through the Wenlock–Pridoli sequence in Ohe­saare (Estonia) and Priekule (Latvia). Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 211–224.
http://dx.doi.org/10.1016/S0031-0182(97)00065-5

Kaljo, D., Kiipli, T. & Martma, T. 1998. Correlation of carbon isotope events and environmental cyclicity in the East Baltic Silurian. In Silurian Cycles – Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes (Landing, E. & Johnson, M. E., eds), New York State Museum Bulletin, 491, 297–312.

Kaljo, D., Martma, T., Männik, P. & Viira, V. 2003. Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Société Géologique de France, 174, 59–66.
http://dx.doi.org/10.2113/174.1.59

Kaljo, D., Grytsenko, V., Martma, T. & Mõtus, M.-A. 2007. Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian Journal of Earth Sciences, 56, 205–220.
http://dx.doi.org/10.3176/earth.2007.02

Kaljo, D., Grytsenko, V. & Martma, T. 2009. Additions to the carbon isotope trend of Podolia (Ukraine) with a summary and evaluation of the Silurian chemostratigraphy. Rendiconti della Societa Paleontologica Italiana, 3, 305–306.

Karatajute-Talimaa, V. & Brazauskas, A. 1994. Distribution of vertebrates in the Silurian of Lithuania. Geologija (Vilnius), 17, 106–114.

Kiipli, T., Tsegelnjuk, P. D. & Kallaste, T. 2000. Volcanic interbeds in the Silurian of the southwestern part of the East European Platform. Proceedings of the Estonian Academy of Sciences, Geology, 49, 163–176.

Kiipli, T., Orlova, K., Kiipli, E. & Kallaste, T. 2008. Use of immobile trace elements for the correlation of Telychian bentonites on Saaremaa Island, Estonia, and mapping of volcanic ash clouds. Estonian Journal of Earth Sciences, 57, 39–52.
http://dx.doi.org/10.3176/earth.2008.1.04

Kleffner, M. A., Barrick, J. E., Ebert, J. R., Matteson, D. K. & Karlsson, H. R. 2009. Conodont biostratigraphy, δ13C chemostratigraphy, and recognition of Silurian/Devonian boundary in the Cherry Valley, New York region of the Appalachian Basin. Palaeontographica Americana, 62, 57–73.

Koren, T. N., Abushik, A. F., Modzalevskaya, T. L. & Pred­techensky, N. N. 1989. Podolia. In A Global Standard for the Silurian System (Holland, C. H. & Bassett, M. G., eds), National Museum of Wales, Geological Series, 9, 141–149.

Koren, T. N., Lenz, A. C., Loydell, D. K., Melchin, M. J., Štorch, P. & Teller, L. 1996. Generalized graptolite zonal sequence defining Silurian time intervals for global paleo­geographic studies. Lethaia, 29, 59–60.
http://dx.doi.org/10.1111/j.1502-3931.1996.tb01837.x

Kozłowski, R. 1929. Les Brachiopodes Gothlandiens de la Podolie. Palaeontologia Polonica, 1, 1–254.

Loydell, D. K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal, 42, 531–546.
http://dx.doi.org/10.1002/gj.1090

Malkowski, K., Racki, G., Drygant, D. & Szaniawski, H. 2009. Carbon isotope stratigraphy across the Silurian–Devonian transition in Podolia, Ukraine: evidence for a global biogeochemical perturbation. Geological Magazine, 146, 674–689.
http://dx.doi.org/10.1017/S0016756809006451

Männik, P. & Viira, V. 2005. Distribution of Ordovician conodonts. In Mehikoorma (421) Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 6, 16–20.

Märss, T. 1986. Pozvonochnye silura Éstonii i zapadnoj Latvii [Silurian vertebrates of Estonia and West Latvia]. Fossilia Baltica, 1, Valgus, Tallinn, 104 pp. [in Russian, with English summary].

Märss, T. 1997. Vertebrates of the Pridoli and Silurian–Devonian boundary beds in Europe. Modern Geology, 21, 17–41.

Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D. & Musteikis, P. 2005. The Wenlock–Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geological Quarterly, 49, 223–234.

Munnecke, A., Samtleben, C. & Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden – relation to similar Palaeozoic and Proterozoic events. Palaeo­geography, Palaeoclimatology, Palaeoecology, 195, 99–124.
http://dx.doi.org/10.1016/S0031-0182(03)00304-3

Munnecke, A., Calner, M., Harper, D. A. T. & Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeo­climatology, Palaeoecology, 296, 389–413.
http://dx.doi.org/10.1016/j.palaeo.2010.08.001

Nestor, H. 1997. Silurian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 89–106. Estonian Academy Publishers, Tallinn.

Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–204. Estonian Academy Publishers, Tallinn.

Nestor, V. 2009. Biostratigraphy of the Ludlow chitinozoans from East Baltic drill cores. Estonian Journal of Earth Sciences, 58, 170–184.
http://dx.doi.org/10.3176/earth.2009.3.02

Nestor, V. 2011. Chitinozoan biostratigraphy of the Přídolí Series of the East Baltic. Estonian Journal of Earth Sciences, 60, 191–206.
http://dx.doi.org/10.3176/earth.2011.4.01

Nikiforova, O. I. & Predtechensky, N. N. 1972. Stratigraphy. In Opornyj razrez silura i nizhnego devona Podolii [Silurian and Lower Devonian Key Section of Podolia] (Sokolov, B. S., ed.). Nauka, Leningrad, 262 pp. [in Russian].

Nowlan, G. S. & Barnes, C. R. 1987. Application of conodont colour alteration indices to regional and economic geology. In Conodonts: Investigative Techniques and Applications (Austin, R. L., ed.), pp. 188–202. Ellis Horwood Ltd. Publisher for British Micropalaeontological Society, Chichester.

Paškevičius, J. 1997. The Geology of the Baltic Republics. Vilnius University, Geological Survey of Lithuania, Vilnius, 388 pp.

Paškevičius, J., Lapinskas, P., Brazauskas, A., Musteikis, P. & Jacyna, J. 1994. Stratigraphic revision of the regional stages of the Upper Silurian part in the Baltic Basin. Geologija (Vilnius), 17, 64–87.

Predtechensky, N. N., Koren, T. N., Modzalevskaya, T. L., Nikiforova, O. I., Berger, A. Ya. & Abushik, A. F. 1983. Sedimentation cycles and changes of ecological faunal assemblages in the Silurian of Podolia. In Problems of Ecology of Faunas and Floras of Ancient Basins (Nevesskaya, L. A., ed.), Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 194, 61–74 [in Russian].

Raukas, A. & Teedumäe, A. (eds). 1997. Geology and Mineral Resources of Estonia. Estonian Academy Publishers, Tallinn, 436 pp.

Saltzman, M. R. 2002. Carbon isotope (δ13C) stratigraphy across the Silurian–Devonian transition in North America: evidence for a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 187, 83–100.
http://dx.doi.org/10.1016/S0031-0182(02)00510-2

Salvador, A. (ed.). 1994. International Stratigraphic Guide. International Union of Geological Sciences and Geological Society of America, Boulder, 214 pp.

Samtleben, C., Munnecke, A., Bickert, T. & Pätzold, J. 1996. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau, 85, 278–292.
http://dx.doi.org/10.1007/BF02422234

Sarv, L. 1982. On ostracode zonation of the East Baltic Upper Silurian. In Ecostratigraphy of the East Baltic Silurian (Kaljo, D. & Klaamann, E., eds), pp. 71–77. Institute of Geology, Academy of Sciences of the Estonian S.S.R., Valgus, Tallinn.

Schönlaub, H. P., Kreutzer, L. H., Joachimski, M. M. & Buggisch, W. 1994. Paleozoic boundary sections of the Carnic Alps (Southern Austria). Erlanger Geologische Abhandlungen, 122, 77–103.

Skompski, S., Luczynski, P., Drygant, D. & Kozlowski, W. 2008. High-energy sedimentary events in lagoonal successions of the Upper Silurian of Podolia, Ukraine. Facies, 54, 277–296.
http://dx.doi.org/10.1007/s10347-007-0133-1

Tsegelnyuk, P. D., Gritsenko, V. P., Konstantinenko, L. I., Ishchenko, A. A., Abushik, A. F., Bogoyavlenskaya, O. V., Drygant, D. M., Zaika-Novatsky, V. S, Kadlets, N. M., Kiselev, G. N. & Sytova, V. A. 1983. The Silurian of Podolia. The Guide to Excursion. International Union of Geological Sciences, Subcommission on Silurian Stratigraphy; Naukova Dumka, Kiev, 224 pp. [in Russian and English].

Viira, V. 1999. Late Silurian conodont biostratigraphy in the northern East Baltic. Bolletino della Societa Paleontologica Italiana, 37, 299–310.

Viira, V. 2000. Latest Silurian (Ohesaare Stage) conodonts and the detorta zone in the northern East Baltic. Proceedings of the Estonian Academy of Sciences, Geology, 49, 44–62.

Walliser, O. H. 1995. Global events in the Devonian and Carboniferous. In Global Events and Event Stratigraphy in the Phanerozoic (Walliser, O. H., ed.), pp. 225–250. Springer, Berlin.

Wigforss-Lange, J. 1999. Carbon isotope 13C enrichment in Upper Silurian (Whitcliffian) marine calcareous rocks in Scania, Sweden. GFF, 121, 273–279.
http://dx.doi.org/10.1080/11035899901214273

Žigaite, Ž., Joachimski, M., Lehnert, O. & Brazauskas, A. 2010. δ18O composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeo­geography, Palaeoclimatology, Palaeoecology, 294, 242–247.
http://dx.doi.org/10.1016/j.palaeo.2010.03.033

Back to Issue