headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
Vol. 61, Issue 4
Vol. 61, Issue 3
Vol. 61, Issue 2
Vol. 61, Issue 1
» 2011
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

The influence of coastal morphology on wind dynamics; pp. 120–130

(Full article in PDF format) doi: 10.3176/earth.2012.2.04


Authors

Darius Jarmalavičius, Jonas Satkūnas, Gintautas Žilinskas, Donatas Pupienis

Abstract

An analysis of the dynamics of wind velocity along the Baltic coast of Lithuania is presented, based on data collected during field experiments in the summer, fall and winter of 1999–2001 and 2007–2009 at several sites (Būtingė, Šaipiai, Smiltynė, Juodkrantė, Pervalka and Nida). The locations were chosen in order to encompass a wide spectrum of beach and dune ridge morphology. The relationship between wind velocity dynamics and coastal morphology was established, based on measurements of the slope angle, height and shape of the dune crest, as well as measurements of the morphology of the area behind the foredune ridge. On the basis of a comparison of near-surface wind velocity patterns, shear velocity (U*) and surface roughness length (z0) were calculated. It was determined that U* decreases from the middle of the beach towards the foredune toe, then increases towards the crest of the foredune and decreases down the lee slope. A direct correlation exists between U* and the stoss slope inclination, and the relative height of the foredune. Surface roughness length also increases from the beach towards the foredune crest.

Keywords

Lithuania, Baltic Sea, beach, foredune, shear velocity, surface roughness length.

References

Arens , S. M. 1996. Patterns of sand transport on vegetated foredunes. Geomorphology , 17 , 339–350.
http://dx.doi.org/10.1016/0169-555X(96)00016-5

Arens , S. M. 1997. Transport rates and volume changes in a coastal foredune on a Duch Waden island. Journal of Coastal Conservation , 3 , 49–56.

Arens , S. M. , Van Kaam-Peters , H. M. E. & Van Boxel , J. H. 1995. Air flow over foredunes and implications for sand transport. Earth Surface Processes and Landforms , 20 , 315–332.
http://dx.doi.org/10.1002/esp.3290200403

Bauer , B. O. , Davidson-Arnott , R. G. D. , Nordstrom , K. F. , Ollerhead , J. & Jackson , N. L. 1996. Indeterminacy in aeolian sediment transport across beaches. Journal of Coastal Research , 12(3) , 641–653.

Davidson-Arnott , R. G. D. & Law , M. N. 1996. Measurement and prediction of long-term sediment supply to coastal foredunes. Journal of Coastal Research , 12 , 656–663.

Fraser , G. S. , Bennet , S. W. , Olyphant , G. A. , Bauch , N. J. , Ferguson , V. , Gellasch , C. A. , Millard , C. L. , Mueller , B. , O’Malley , P. J. , Way , J. N. & Woodfield , M. C. 1998. Windflow circulation patterns in a coastal dune blowout , south coast of Lake Michigan. Journal of Coastal Research , 14(2) , 451–460.

Gares , P. A. , Davidson-Arnott , R. G. D. , Bauer , B. O. , Sherman , D. J. , Carter , R. W. G. , Jackson , D. W. T. & Nordstrom , K. F. 1996. Alongshore variations in aeolian sediment transport: Carrick Finn Strand , Ireland. Journal of Coastal Research , 12(3) , 673–682.

Hesp , P. A. , Davidson-Arnott , R. , Walker , I. J. & Ollerhead , J. 2005. Flow dynamics over a foredune at Prince Edward Island , Canada. Geomorphology , 65 , 71–84.
http://dx.doi.org/10.1016/j.geomorph.2004.08.001

Hesp , P. A. , Walker , I. J. , Namikas , S. L. , Davidson-Arnott , R. , Bauer , B. O. & Ollerhead , J. 2009. Storm wind flow over foredune. Prince Edward Island , Canada. Journal of Coastal Research , SI 56 , 312–316.

Houser , C. , Hobbs , C. & Saari , B. 2008. Posthurricane airflow and sediment transport over a recovering dune. Journal of Coastal Research , 24(4) , 944–953.
http://dx.doi.org/10.2112/06-0767.1

Keevallik , S. 2008. Wind speed and velocity at three Estonian coastal stations 1969–1992. Estonian Journal of Engineering , 14 , 209–219.
http://dx.doi.org/10.3176/eng.2008.3.02

Kroon , A. & Hoekstra , P. 1990. Eolian sediment transport on a natural beach. Journal of Coastal Research , 6(2) , 367–379.

Li , S. Z. , Ni , J. R. & Mendoza , C. 2004. An analytic expression for wind-velocity profile within the saltation layer. Geomorphology , 60 , 359–369.
http://dx.doi.org/10.1016/j.geomorph.2003.08.008

Luna , M. , Parteli , E. , Duran , O. & Herrmann , H. 2011. Model for the genesis of coastal dune fields with vegetation. Geomorphology , 129 , 215–224.
http://dx.doi.org/10.1016/j.geomorph.2011.01.024

Mulligan , K. R. 1988. Velocity profiles measured on the wind-ward slope of transverse dune. Earth Surface Processes and Landforms , 13 , 573–582.
http://dx.doi.org/10.1002/esp.3290130703

Nordstrom , K. F. , Bauer , B. O. , Davidson-Arnott , R. G. D. , Gares , P. A. , Carter , R. W. G. , Jackson , D. W. T. & Sherman , D. J. 1996. Offshore aeolian transport across a beach: Carrick Finn Strand , Ireland. Journal of Coastal Research , 12(3) , 664–671.

Orviku , K. , Jaagus , J. , Kont , A. , Ratas , U. & Rivis , R. 2003. Increasing activity of coastal processes associated with climate change in Estonia. Journal of Coastal Research , 19(2) , 364–375.

Parsons , D. R. , Walker , I. J. & Wiggs , G. F. S. 2004. Numerical modeling of flow structures over idealized transverse Aeolian dunes of varying geometry. Geomorphology , 59 , 149–164.
http://dx.doi.org/10.1016/j.geomorph.2003.09.012

Pelletier , J. D. 2009. Controls on the height and spacing of eolian ripples and transverse dunes: a numerical modeling investigation. Geomorphology , 105 , 322–333.
http://dx.doi.org/10.1016/j.geomorph.2008.10.010

Rasmussen , K. R. 1989. Some aspects of flow over coastal dunes. Proceedings of the Royal Society of Edinburgh , 96B , 129–147.

Robertson-Rintoul , M. J. 1990. A quantitative analysis of the near-surface wind flow pattern over coastal parabolic dunes. In Coastal Dunes. Form and Process (Nordstrom , K. , Psuty , N. & Carter , B. , eds) , pp. 57–78. Wiley , Chichester.

Sarre , R. D. 1989. The morphological significance of vegetation and relief on coastal foredune processes. Zeitschrift für Geomorphologie , N. F. , 73 , 17–31.

Sherman , D. J. & Hotta , S. 1990. Aeolian sediment transport: theory and measurement. In Coastal Dunes. Form and Process (Nordstrom , K. , Psuty , N. & Carter , B. , eds) , pp. 17–37. Wiley , Chichester.

Svasek , J. N. & Terwindt , J. H. J. 1974. Measurement of sand transport by wind on a natural beach. Sedimentology , 21 , 311–322.
http://dx.doi.org/10.1111/j.1365-3091.1974.tb02061.x

Van Boxel , J. H. , Arens , S. M. & Van Dijk , P. M. 1999. Aeolian processes across transverse dunes. I: modelling the air­flow. Earth Surface Processes and Landforms , 24 , 255–270.
http://dx.doi.org/10.1002/(SICI)1096-9837(199903)24:3<255::AID-ESP962>3.0.CO;2-3

Walker , I. J. & Nickling , W. G. 2002. Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes. Progress in Physical Geography , 26 , 47–75.
http://dx.doi.org/10.1191/0309133302pp325ra

Walker , I. J. , Hesp , P. A. , Davidson-Arnott , R. G. D. & Ollerhead , J. 2006. Topographic steering of alongshore airflow over a vegetated foredune: Greenwich Dunes , Prince Edward Island , Canada. Journal of Coastal Research , 22(5) , 1278–1291.
http://dx.doi.org/10.2112/06A-0010.1

Walker , I. J. , Hesp , P. A. , Davidson-Arnott , R. G. D. , Bauer , B. O. , Namikas , S. L. & Ollerhead , J. 2009. Responses of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich Dunes , Prince Edward Island , Canada. Geomorphology , 105 , 127–138.
http://dx.doi.org/10.1016/j.geomorph.2007.12.019

Wiggs , G. F. C. 2001. Desert dune processes and dynamics. Progress in Physical Geography , 25 , 53–79.
http://dx.doi.org/10.1191/030913301667883129

Wiggs , G. F. C. , Livingstone , I. & Warren , A. 1996. The role of streamline in sand dune dynamics: evidence from field and wind tunnel measurements. Geomorphology , 17 , 29–46.
http://dx.doi.org/10.1016/0169-555X(95)00093-K

Žilinskas , G. , Jarmalavičius , D. & Kulvičienė , G. 2000. Uragano ‘Anatolijus’ padariniai Lietuvos jūriniame krante [Assessment of the effects of hurricane ‘Anatoli’ on the Lithuanian marine coast]. Geografijos metraštis , 33 , 191–206 [in Lithuanian].

Žilinskas , G. , Jarmalavičius , D. & Minkevičius , V. 2001. Eoliniai procesai jūros krante [Aeolian Processes on the Marine Coast]. The Institute of Geography , Vilnius , 284 pp. [in Lithuanian].

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December