headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
Guidelines for Reviewers
» For Reviewers
» Review Form
List of Issues
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
Vol. 60, Issue 4
Vol. 60, Issue 3
Vol. 60, Issue 2
Vol. 60, Issue 1
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Some comments on the theory of short fibre reinforced materials; pp. 179–183

(Full article in PDF format) doi: 10.3176/proc.2011.3.06


Authors

Heiko Herrmann, Marika Eik

Abstract

The orientation of fibres in short fibre reinforced materials is essential for the properties of the composite. It is state of the art to use an orientation number to estimate how many fibres are aligned in the stress direction. This, however, is a very crude approach, as the orientation number is defined by use of the average of the projected length of the fibres. Therefore, the orientation number is not a material property – it depends also on the projection direction. Additionally, a simple number cannot be used to describe anisotropic properties. We introduce a tensorial approach, which is objective and consists of real material properties.

Keywords

microstructured solids, constitutive theory, composites, short fibres, alignment tensors.

References

1. Grünewald , S. Performance-Based Design of Self-Compacting Fibre Reinforced Concrete. PhD thesis , Technische Universiteit Delft , 2004.

2. Lappa , E. S. High Strength Fibre Reinforced Concrete: Static and Fatigue Behaviour in Bending. PhD thesis , Technische Universiteit Delft , 2007.

3. Laranjeira de Oliveira , F. Design-Oriented Constitutive Model for Steel Fiber Reinforced Concrete. PhD thesis , Universitat Politecnica de Catalunya , 2010.

4. Papenfuss , C. , Böhme , T. , Herrmann , H. , Muschik , W. , and Verhás , J. Dynamics of the size and orientation distribution of microcracks and evolution of macroscopic damage parameters. J. Non-Equilib. Thermodyn. , 2007 , 32(2) , 1–14.

5. Muschik , W. , Papenfuss , C. , and Ehrentraut , H. Concepts of Continuum Thermodynamics. Kielce University of Technology , Technische Universität Berlin , 1996.

6. Papenfuss , C. , Ván , P. , and Muschik , W. Mesoscopic theory of microcracks. Arch. Mech. , 2003 , 55(5–6) , 481–499.

7. Muschik , W. , Ehrentraut , H. , and Papenfuss , C. Concepts of mesoscopic continuum physics with application to biaxial liquid crystals. J. Non-Equilib. Thermodyn. , 2000 , 25 , 179–197.

8. Jankun-kelly , T. J. and Mehta , K. Superellipsoid-based , real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. In IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006)}. 2006 , 1197–1204.

9. Alts , T. Thermodynamik elastischer Körper mit thermo-kinematischen Zwangsbedingungen: fadenverstärkte Materialien. Habilitation , TU Berlin , Fachbereich 9 , 1979 (in German; Engl. translation of the title: Thermodynamics of elastic bodies with thermo-kinetic constraints: fibre reinforced materials).
 
Back

Current Issue: Vol. 67, Issue 1 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December