headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 27, Issue 4
Vol. 27, Issue 3
Vol. 27, Issue 2
Vol. 27, Issue 1
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

FLASH PYROLYSIS OF FUSHUN OIL SHALE FINE PARTICLES IN AN EXPERIMENTAL FLUIDIZED-BED REACTOR; pp. 297–308

(Full article in PDF format) doi: 10.3176/oil.2010.4.03


Authors

MINGDONG CHEN, YULIANG SHI, LIANGJIE DONG, QI WANG

Abstract

Oil shale screenings (d≤10 mm), not used for the Fushun retort in the Fushun retorting plant of China, were crushed and sieved to different fractions of fine particles (in the range of 0–0.95 mm) which were pyrolysed in an experi­mental fluidized-bed reactor developed by the Institute of Comprehensive Utilization of Waste, Jilin Agricultural University. The optimum pyrolysis parameters of fine-particle oil shale were determined via orthogonal experi­ments, and one-factor experiment was performed to verify the results of the orthogonal experiments. The effects of oil shale particle size, feeding rate and reaction temperature on the yield of shale oil were analyzed. The results showed that the yield of shale oil reached 5.13% under the optimum experiment conditions, and the optimum combination was as follows: particle size of oil shale less than 0.47 mm; feeding rate 14 kg/h (residence time 11 min) and reactor temperature 450–500 °C. Experimental parameters of flash pyrolysis of oil shale fine particles will provide theoretical basis for utilizing shale screenings of retorting plant.

References

  1. Hepbasli , A. Oil shale as an alternative energy source // Energ. Source. 2004. Vol. 26 , No. 2. P. 107–118.
doi:10.1080/00908310490258489

  2. Adnan , A. H. , Mohammad , A. H. , Awni , A. O. , Mamdoh , A. Effect of demineraliza­tion of El-Lajjun Jordanian oil shale on oil yield // Fuel Process. Technol. 2009. Vol. 90 , No. 6. P. 818–824.
doi:10.1016/j.fuproc.2009.03.005

  3. Dyni , J. R. Geology and resources of some world oil-shale deposits // Oil Shale. 2003. Vol. 20 , No. 3. P. 193–252.

  4. Qian , J. L. , Wang , J. Q. , Li , S. Y. Oil shale development in China // Oil Shale. 2003. Vol. 20 , No. 3S. P. 356–359.

  5. Ots , A. Oil shale as a power fuel // Oil Shale. 2005. Vol. 22 , No. 4S. P. 367–368.

  6. Ehinola , O. A. , Sonibare , O. O. , Akanbi , O. A. Economic evaluation , recovery techniques and environmental implications of the oil shale deposit in the Abakaliki anticlinorium , Southeastern Nigeria // Oil Shale. 2005. Vol. 22 , No. 1. P. 5–19.

  7. Abu-Qudais , M. , Jaber , J. O. , Sawalha , S. Kinetics of pyrolysis of Attarat oil shale by thermogravimetry // Oil Shale. 2005. Vol. 22 , No. 1. P. 51–63.

  8. Zhang , Z. Z. Construction of oil shale power plant to develop new energy in Guangdong , China // Guangdong Electric Power. 1991. Vol. 15 , No. 6. P. 7–11 [in Chinese].

  9. Williams , P. F. V. Oil shales and their analysis // Fuel. 1983. Vol. 62 , No. 7. P. 756–771.

10. Zhang , O. M. Several typical oil shale retorting technology // Journal of Jinlin University (Earth Science Edition). 2006. Vol. 36 , No. 2. P. 1020–1023 [in Chinese].

11. Liu Zhaojun , Dong Qingshui. The situation of oil shale resources in China // Journal of Jinlin University (Earth Science Edition. 2006. Vol. 36 , No. 6. P. 869–876 [in Chinese].

12. Wang , S. R. , Luo , Zh. Y. , Dong , L. J. Flash pyrolysis of biomass for bio-oil in a fluidized bed reactor // Acta Energiae Solaris Sinica. 2002. Vol. 23 , No.1. P. 5–8.

13. Roberts , M. J. , Rue , D. M. , Lau , F. S. Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales // Fuel. 1992. Vol. 71 , No. 12. P. 1433–1439.

14. Xu , B. J. , Li , M. L. , Zeng , Zh. Rotating cone flash pyrolysis of biomass study // Environment Process Engineering. 1999. Vol. 17 , No. 5. P. 71–74.

15. Scott , D. S. , Piskorz , J. The flash pyrolysis of aspen-poplar wood // Can. J. Chem. Eng. 1982. Vol. 60 , No. 4. P. 666–674.
doi:10.1002/cjce.5450600514

16. Maschio , G. , Koufopanos , C. , Lucchesi , A. Pyrolysis , a promising route for biomass utilization // Bioresource Technol. 1992. Vol. 42 , No. 3. P. 219–231.
doi:10.1016/0960-8524(92)90025-S

17. Harada , K. Research and development of oil shale in Japan // Fuel. 1991. Vol.70 , No. 11. P. 1330–1335.

18. Dung , N. V. Yields and chemical characteristics of products from fluidized bed steam retorting of Condor and Stuart oil shales: effect of prolysis temperature // Fuel. 1990. Vol. 69 , No. 3. P. 368–376.

19. Han , X. X. , Jiang , X. M. , Cui , Z. G. , Zhang , C.  Q. Pyrolysis behavior of oil shale semi-coke // Chinese Journal of Chemical Engineering. 2006. Vol. 57 , No. 6. P. 126–130.
 
Back

Current Issue: Vol. 36, Issue 2S, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December