ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
STUDY ON THERMAL CONVERSION OF HUADIAN OIL SHALE UNDER N2 AND CO2 ATMOSPHERES; pp. 309–320
PDF | doi: 10.3176/oil.2010.4.04

Authors
XIE FANG-FANG, WANG ZE, LIN WEI-GANG, SONG WEN-LI
Abstract
Pyrolysis of Chinese Huadian oil shale using carrier gases N2 and CO2 was investigated by TG-FTIR method. The results show that carrier gas does not change weight loss or mechanism of pyrolysis, while decomposition of carbonates in the mineral part can be retarded by CO2. This regulation was found to be in accordance with kinetic analytical results. The pyrolysis of oil shale in a fixed bed from room temperature to 500 °C at heating rate of 10-20 °C/min was also investigated. Hydrocarbons are the main components in shale oil, and hydrocarbon derivatives concentrate in the number of C16-C23 by CO2 retorting, the chains being longer than those of hydrocarbons obtained by N2 retorting.
References

  1. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale // Prog. Energ. Combust. 2007. Vol. 33, No. 6. P. 552–579.
doi:10.1016/j.pecs.2006.06.002

  2. Qian, J., Wang, J., Li, S. Oil shale development in China // Oil Shale. 2003. Vol. 20, No. 3 SPECIAL. P. 356–359.

  3. Jamil, K., Hayashi, J.-i., Li, C.-Z. Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor // Fuel. 2004. Vol. 83, No. 7–8. P. 833–843.

  4. Lee, S., Joshi, R. Enhanced Oil Recovery from Western United States Type Oil Shale Using Carbon Dioxide Retorting Technique. U.S Patent No. 4,502,942. March 5. 1985.

  5. Bassam J. Masri. Extraction and Characterization of the El-lajun Jordan Oil Shale. Dissertation, Univ. of Akron, 1998.

  6. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales // Appl. Energ. 1999. Vol. 63, No. 4. P. 269–286.

  7. Jaber, J. O., Probert, S. D. Reaction kinetics of fluidised bed gasification of Jordanian oil shales // Int. J. Therm. Sci. 2000. Vol. 39, No. 2. P. 295–304.
doi:10.1016/S1290-0729(00)00247-7

  8. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing conditions // Fuel Process. Technol. 2000. Vol. 63, No. 1. P. 57–70.
doi:10.1016/S0378-3820(99)00064-8

  9. Carangelo, R. M., Solomon, P. R., Gerson, D.J. Application of TG-FT-i.r. to study hydrocarbon structure and kinetics // Fuel. 1987. Vol. 66, No. 7. P. 960–967.

10. Lisboa, A. C. L. Investigations on Oil Shale Particle Reactions. PhD disserta­tion, Univ. of Colombia, 1977.

11. Martins, M. F., Salvador, S., Thovert, J.-F., Debenest, G. Co-current combus­tion of oil shale – Part 1: Characterization of the solid and gaseous products // Fuel. 2010. Vol. 89, No. 1. P. 144–151.

12. Burnham, A. K. Reaction kinetics between CO2 and oil-shale residual carbon. 1. Effect of heating rate on reactivity // Fuel. 1979. Vol. 58, No. 4. P. 285–292.

13. Burnham, A. K. Reaction kinetics between CO2 and oil-shale residual carbon. 2. Partial-pressure and catalytic-mineral effects // Fuel. 1979. Vol. 58, No. 10. P. 713–718.
Back to Issue