headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

Upconing of saline water from the crystalline basement into the Cambrian–Vendian aquifer system on the Kopli Peninsula, northern Estonia; pp. 277–287

(Full article in PDF format) doi: 10.3176/earth.2010.4.04


Authors

Andres Marandi, Leo Vallner

Abstract

The Cambrian–Vendian aquifer system is the most exploited groundwater resource in northern Estonia. As a result, the extensive use of groundwater has caused changes in the direction and velocity of groundwater flow in the Tallinn area. A ground­water flow and transport model of the Kopli Peninsula was built to investigate the upconing of saline water from an underlying layer, due to overexploitation of groundwater. A transient flow model was run in different flow regimes, using the pumping and water head data from the years 1946–2007. The vertical conductivity of crystalline rocks and the lower portion of Cambrian–Vendian rocks was found to be of the greatest importance for the range and shape of upconing phenomena. The results of the current study show that the range of the upconing process is dependent on the depth of the well screen interval. Therefore the results of many previous studies can be biased by the leaking of water from the underlying crystalline basement. The results also suggest that leakage from an underlying layer can be minimized by changing the screen depth of production wells.

Keywords

Cambrian–Vendian aquifer system, upconing, groundwater modelling.

References

Barcelona , M. J. , Wehrmann , H. A. & Varljen , M. D. 1994. Reproducible well-purging procedures and VOC stabili­zation criteria for ground water sampling. Ground Water , 32 , 12–22.
doi:10.1111/j.1745-6584.1994.tb00605.x

Boylan , J. A. 2004. Chemical artifacts of sampling methods in groundwater. Geological Society of America Abstracts with Programs , 36 , 242.

Chandler , R. A. & McWhorter , D. B. 1975. Interface upconing beneath a pumping well. Ground Water , 13 , 354–359.
doi:10.1111/j.1745-6584.1975.tb03599.x

Corcho Alvarado , J. A. , Barbecot , F. & Purtschert , R. 2009. Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France). Hydrogeology Journal , 17 , 425–431.
doi:10.1007/s10040-008-0383-1

Einarson , M. D. & Cherry , J. A. 2002. A new multilevel ground water monitoring system using multichannel tubing. Ground Water Monitoring & Remediation , 22 , 52–65.
doi:10.1111/j.1745-6592.2002.tb00771.x

Hamza , K. I. 2006. Numerical analysis of saltwater upconing beneath a pumping well. Scientific Bulletin , Faculty of Engineering , Ain Shams University , 41(1) , 453–466.

Hardy , M. A. , Leahy , P. P. & Alley , W. M. 1989. Well Installation and Documentation , and Ground-Water Sampling Protocols for the Pilot National Water-Quality Assessment Program. U.S. Geological Survey open-file report , 89-396 , 36 pp.

Karro , E. & Marandi , A. 2003. Mapping of potentially hazardous elements in the Cambrian–Vendian aquifer system , northern Estonia. Bulletin of the Geological Society of Finland , 75 , 17–27.

Karro , E. , Marandi , A. & Vaikmäe , R. 2004. The origin of increased salinity in the Cambrian–Vendian aquifer system on the Kopli Peninsula , northern Estonia. Hydrogeology Journal , 12 , 424–435.
doi:10.1007/s10040-004-0339-z

Liiv , K. , Antso , K. & Põder , A. (eds). 2010. Eesti kesk­konna­seire 2008 [Environmental Monitoring in Estonia , 2008]. Estonian Environment Information Centre , Tallinn , 191 pp. [in Estonian].

Marandi , A. 2007. Natural Chemical Composition of Groundwater as a Basis for Groundwater Management in Cambrian–Vendian Aquifer System in Estonia. Dissertationes Geologicae Universitatis Tartuensis , 21 , Tartu Ülikooli Kirjastus , Tartu , 42 pp.

Marandi , A. , Karro , E. & Puura , E. 2004. Barium anomaly in the Cambrian–Vendian aquifer system in North Estonia. Environmental Geology , 47 , 132–139.
doi:10.1007/s00254-004-1140-y

Mayo , A. L. 2010. Ambient well-bore mixing , aquifer cross-contamination , pumping stress , and water quality from long-screened wells: What is sampled and what is not? Hydrogeology Journal , 18 , 823–837.
doi:10.1007/s10040-009-0568-2

Mokrik , R. 1997. The Palaeohydrogeology of the Baltic Basin. Tartu University Press , Tartu , 138 pp.

Perens , R. & Vallner , L. 1997. Water-bearing formation. In Geology and Mineral Resources of Estonia (Raukas , A. & Teedumäe , A. , eds) , pp. 137–145. Estonian Academy Publishers , Tallinn.

Perens , R. , Savva , V. , Lelgus , M. & Parm , T. 2001. The Hydrogeochemical Atlas of Estonia. The Geological Survey of Estonia , Tallinn [CD version].

Savitskaja , L. 1999. Põhjavee seisund 1997.–1998. aastal [State of Groundwater in 1997–1998]. Geological Survey of Estonia , Tallinn , 112 pp. [in Estonian].

Savitski , L. 2001. Põhjaveeseire Balti Laevaremonditehase veehaardel 2001. a. [Groundwater Monitoring at the Groundwater Supply of the Plant of Baltic Ship Repairers in 2001]. Geological Survey of Estonia , Report of Investigation 7316 , 10 pp. [in Estonian].

Sufi , A. B. , Latif , M. & Skogerboe , G. V. 1998. Simulating skimming well techniques for sustainable exploitation of groundwater. Irrigation and Drainage Systems , 12 , 203–226.
doi:10.1023/A:1006085700543

Zhou , Q. , Bear , J. & Bensabat , J. 2005. Saltwater upconing and decay beneath a well pumping above an interface zone. Transport in Porous Media , 61 , 337–363.
doi:10.1007/s11242-005-0261-4

Todd , D. K. 1980. Groundwater Hydrology. John Wiley & Sons , New York , 535 pp.

Vallner , L. 2003. Hydrogeological model of Estonia and its applications. Proceedings of the Estonian Academy of Sciences , Geology , 52 , 179–192.

Vallner , L. & Savitskaja , L. 1997. Groundwater extraction and safe yield. In Geology and Mineral Resources of Estonia (Raukas , A. & Teedumäe , A. , eds) , pp. 159–162. Estonian Academy Publishers , Tallinn.

Yezhova , M. , Polyakov , V. , Tkachenko , A. , Savitski , L. & Belkina , V. 1996. Palaeowaters of North Estonia and their influence on changes of resources and the quality of fresh groundwaters of large coastal water supplies. Geologija (Vilnius) , 19 , 37–40.

WHO 2004. Guidelines for Drinking-Water Quality. 3rd edn. World Health Organization , Geneva , 515 pp.
 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December