headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Finding a class of 2-groups; pp. 370–374

(Full article in PDF format) doi: 10.3176/proc.2010.4.17


Authors

Tatjana Tamberg

Abstract

Let n ³ ≥3 be an integer and Cm denote a cyclic group of order m. All groups which can be presented as a semidirect products (C2n x C2n) ⋋C4 are described. These groups are given by generators and defining relations.

Keywords

group, semidirect product, automorphism.

References

  1. Coxeter , H. S. M. and Moser , W. O. J. Generators and Relations for Discrete Groups. Springer-Verlag , 1972.

2. Gramushnjak , T. A characterization of a class of 2-groups by their defining relations. J. Gen. Lie Theory Appl. , 2008 , 2 , 157–161.
doi:10.4303/jglta/S070312

3. Gramushnjak , T. and Puusemp , P. A characterization of a class of groups of order 32 by their endomorphism semigroups. Algebras Groups Geom. , 2005 , 22 , 387–412.

4. Gramushnjak , T. and Puusemp , P. Description of a class of 2-Groups. J. Nonlinear Math. Phys. , 2006 , 13 , 55–65.
doi:10.2991/jnmp.2006.13.s.7

5. Gramushnjak , T. and Puusemp , P. A characterization of a class of 2-groups by their endomorphism semigroups. Ch. 14 In Generalized Lie Theory in Mathematics , Physics and Beyond (Silvestrov , S. et al. , eds). Springer-Verlag , Berlin , 2009 , 151–159.
doi:10.1007/978-3-540-85332-9_14

6. Hall , M. , Jr. and Senior , J. K. The Groups of Order 2n , n £ 6. Macmillan , New York; Collier-Macmillan , London , 1964.

7. Puusemp , P. Non-abelian groups of order 16 and their endomorphism semigroups. J. Math. Sci. , 2005 , 131 , 6098–6111.
doi:10.1007/s10958-005-0463-x

8. Puusemp , P. Groups of order less than 32 and their endomorphism semigroups. J. Nonlinear Math. Phys. , 2006 , 13 , Supplement , 93–101.
doi:10.2991/jnmp.2006.13.s.11

9. Puusemp , P. Groups of order 24 and their endomorphism semigroups. J. Math. Sci. , 2007 , 144 , 3980–3992.
doi:10.1007/s10958-007-0251-x
 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December