ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland; pp. 187–210
PDF | doi: 10.3176/eng.2010.3.01

Authors
Oleg Andrejev, Alexander Sokolov, Tarmo Soomere, Rolf Värv, Bert Viikmäe
Abstract
We present preliminary results of the extension of the OAAS circulation model to a high-resolution bathymetry with a finest resolution of 0.25 nautical miles in the Gulf of Finland, the Baltic Sea. The models with a resolution of 1 mile or finer are capable of resolving typical mesoscale eddies in this basin where the internal Rossby radius is usually 2–4 km. An increase in the model resolution from 1 to 0.5 NM leads to a clear improvement of the representation of the key hydrophysical fields. A further increase in the resolution to 0.25 NM has a lesser impact on hydro­physical fields, but may lead to some changes in the instantaneous patterns of currents. The para­meterization of the spreading effect of sub-grid-scale turbulence on the trajectories of initially closely located drifters is realized by means of accounting for the largely rotational character of the dynamics in this basin. The modelled average spreading rate for initially closely located particles for 1991 was 2 mm/s.
References

  1. Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., Erichsen, A., Funkquist, L., Inkala, A., Neelov, I. et al. Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Env. Res., 2010, 15. Forthcoming.

  2. Griffa, A., Piterbarg, L. I. and Ozgokmen, T. Predictability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J. Marine Res., 2004, 62, 1–35.
doi:10.1357/00222400460744609

  3. Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C. et al. Super-ensemble techniques: Applica­tion to surface drift prediction. Progr. Oceanogr., 2009, 82, 149–167.
doi:10.1016/j.pocean.2009.06.002

  4. Soomere, T., Viikmäe, B., Delpeche, N. and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 156–165.
doi:10.3176/proc.2010.2.15

  5. Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M. and Döös, K. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Env. Res., 2011, 16. Forthcoming.

  6. Drijfhout, S. S. Eddy-genesis and the related heat transport: A parameter study. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (Nihoul, J. C. J. and Jamart, B. M., eds.). Elsevier Oceanography Series, 1989, 50, 245–263.

  7. Lindow, H. Experimentelle Simulationen windangeregter dynamischer Muster in hochauflösen­den numerischen Modellen. Meereswissenschaftliche Berichte No. 22. Institut für Ostsee­forschung, Warnemünde, 1997.

  8. Meier, H. E. M., Döscher, R. and Faxén, T. A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow. J. Geophys. Res., 2003, 108, C3273.
doi:10.1029/2000JC000521

  9. Meier, H. E. M. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci., 2007, 74, 717–734.

10. Alenius, P., Nekrasov, A. and Myrberg, K. The baroclinic Rossby-radius in the Gulf of Finland. Cont. Shelf Res., 2003, 23, 563–573.
doi:10.1016/S0278-4343(03)00004-9

11. Leppäranta, M. and Myrberg, K. Physical Oceanography of the Baltic Sea. Springer Praxis, 2009.
doi:10.1007/978-3-540-79703-6

12. Andrejev, O., Myrberg, K., Alenius, P. and Lundberg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling. Boreal Env. Res., 2004, 9, 1–16.

13. Gästgifvars, M., Lauri, H., Sarkanen, A.-K., Myrberg, K., Andrejev, O. and Ambjörn, C. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci., 2006, 70, 567–576.
doi:10.1016/j.ecss.2006.06.010

14. Seifert, T., Tauber, F. and Kayser, B. A high resolution spherical grid topography of the Baltic Sea. In Proc. Baltic Sea Science Congress. Stockholm, 2001, vol. 2, Poster # 147, www.io-warnemuende.de/iowtopo

15. Andrejev, O., Myrberg, K. and Lundberg, P. A. Age and renewal time of water masses in a semi-enclosed basin – Application to the Gulf of Finland. Tellus, 2004, 56A, 548–558.

16. Soomere, T. Anisotropy of wind and wave regimes in the Baltic Proper. J. Sea Res., 2003, 49, 305–316.
doi:10.1016/S1385-1101(03)00034-0

17. Soomere, T. Wind wave statistics in Tallinn Bay. Boreal Env. Res., 2005, 10, 103–118.

18. Passenko, J., Lessin, G., Erichsen, A. C. and Raudsepp, U. Validation of hydrostatic and non­hydrostatic versions of hydrodynamical model MIKE 3 applied for the Baltic Sea. Estonian J. Eng., 2008, 14, 255–270.
doi:10.3176/eng.2008.3.05

19. Zhurbas, V., Laanemets, J. and Vahtera, E. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J. Geophys. Res., 2008, 113, C05004.
doi:10.1029/2007JC004280

20. Zhurbas, V. M., Laanemets, J., Kuzmina, N. P., Muraviev, S. S. and Elken, J. Direct estimates of the lateral eddy diffusivity in the Gulf of Finland of the Baltic Sea (based on the results of numerical experiments with an eddy resolving model). Oceanology, 2008, 48, 175–181.

21. Lips, U., Lips, I., Liblik, T. and Elken, J. Estuarine transport versus vertical movement and mixing of water masses in the Gulf of Finland (Baltic Sea). In IEEE/OES US/EU-Baltic International Symposium. Tallinn, Estonia, 2008. IEEE, 2008, 326–333.

22. Laanemets, J., Zhurbas, V., Elken, J. and Vahtera, E. Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments. Boreal Env. Res., 2009, 14, 213–225.

23. Seifert, T. and Kayser, B. A high resolution spherical grid topography of the Baltic Sea. Meereswissenschaftliche Berichte 9, Institut für Ostseeforschung, Warnemünde, 1995.

24. Elken, J. Modelling of coastal circulation and oil drift at possible deep harbour sites, north-western Saaremaa Island. Proc. Estonian Acad. Sci. Eng., 2001, 7, 141–156.

25. Suursaar, Ü., Kullas, T. and Otsmann, M. Hydrodynamic modelling of sea levels in the Väina­meri and Pärnu Bay. Proc. Estonian Acad. Sci. Eng., 2001, 7, 222–234.

26. Laanearu, J., Koppel, T., Soomere, T. and Davies, P. A. Joint influence of river stream, water level and wind waves on the height of sand bar in a river mouth. Nord. Hydrol., 2007, 38, 287–302.
doi:10.2166/nh.2007.012

27. Torsvik, T. and Soomere, T. Modeling of long waves from high speed ferries in coastal waters. J. Coastal Res., 2009, SI 56, vol. II, 1075–1079.

28. Torsvik, T., Didenkulova, I., Soomere, T. and Parnell, K. E. Variability in spatial patterns of long nonlinear waves from fast ferries in Tallinn Bay. Nonlin. Processes Geophys., 2009, 16, 351–363.
doi:10.5194/npg-16-351-2009

29. Averkiev, A. S. and Klevanny, K. A. Determining cyclone trajectories and velocities leading to extreme sea level rises in the Gulf of Finland. Meteorol. Hydrol., 2007, 8, 55–63 (in Russian).

30. Ryabchenko, V., Dvornikov, A., Haapala, J. and Myrberg, K. Modelling ice conditions in the easternmost Gulf of Finland in the Baltic Sea. Cont. Shelf Res., 2010, 30, 1458–1471.
doi:10.1016/j.csr.2010.05.006

31. Andrejev, O. and Sokolov, A. Numerical modelling of the water dynamics and passive pollutant transport in the Neva inlet. Meteorol. Hydrol., 1989, 12, 75–85 (in Russian).

32. Andrejev, O. and Sokolov, A. 3D baroclinic hydrodynamic model and its applications to Skagerrak circulation modelling. In Proc. 17th Conference of the Baltic Oceanographers. Norrköping, Sweden, 1990, 38–46.

33. Bryan, K. A numerical method for the study of the circulation of the World Ocean. J. Comp. Phys., 1969, 4, 347–376.
doi:10.1016/0021-9991(69)90004-7

34. Smagorinsky, J. General circulation experiments with the primitive equations, I. The basic experiment. Mon. Weather Rev., 1963, 91, 99–164.
doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

35. Kochergin, V. P. Three-dimensional prognostic models. In Three-dimensional Coastal Ocean Models (Heaps, N. S., ed.), Am. Geophys. Union, Coast. Estuar. Sci. Ser., 1987, 4, 201–208.

36. Millero, F. and Kremling, I. The densities of the Baltic Sea deep waters. Deep Sea Res., 1976, 23, 1129–1138.

37. Niiler, P. and Kraus, E. One-dimensional models of the upper ocean. In Modelling and Prediction of the Upper Layers of the Ocean (Kraus, E., ed.). Pergamon Press, Oxford, 1977, 143–172.

38. Bunker, J. Computations of surface energy flux and annual air-sea interaction cycle of the North Atlantic. Mon. Weath. Rev., 1977, 105, 33–65.

39. Blumberg, A. and Mellor, G. A description of a three-dimensional coastal ocean circulation model. In Three-dimensional Coastal Ocean Models (Heaps, N. S., ed.). American Geo­phys. Union, Coast. Estuar. Sci. Ser., 1987, 4, 1–16.

40. Proudman, J. Dynamical Oceanography. Methuen & Co., London, 1953.

41. Sokolov, A., Andrejev, O., Wulff, F. and Rodriguez Medina, M. The Data Assimilation System for Data Analysis in the Baltic Sea. System Ecology Contributions, No. 3. Stockholm University, Sweden, 1997.

42. Mesinger, F. and Arakawa, A. Numerical methods used in atmospheric models. GARP Publ. Ser., No. 17, I, 1976.

43. Liu, S.-K. and Leendertse, J. Multidimensional numerical modelling of estuaries and coastal seas. Adv Hydrosci., 1978, 11, 95–164.

44. Simons, T. J. Verification of numerical models of Lake Ontario. Part I. Circulation in spring and early summer. J. Phys. Oceanogr., 1974, 4, 507–523.
doi:10.1175/1520-0485(1974)004<0507:VONMOL>2.0.CO;2

45. Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys., 1976, 21, 251–269.
doi:10.1016/0021-9991(76)90023-1

46. Mutzke, A. Open boundary condition in the GFDL-model with free surface. Ocean Model., 1998, 116, 2–6.

47. Höglund, A., Meier, H. E. M., Broman, B. and Kriezi, E. Validation and Correction of Regionalised ERA-40 Wind Fields over the Baltic Sea Using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No. 97, Swedish Meteorological and Hydrological Institute, SE-60176. Norrköping, Sweden, 2009.

48. Bergström, S. and Carlsson, B. River runoff to the Baltic Sea: 1950–1990. Ambio, 1994, 23, 280–287.

49. Myrberg, K. and Andrejev, O. Main upwelling regions in the Baltic Sea – a statistical analysis based on three-dimensional modelling. Boreal Env. Res., 2003, 8, 97–112.

50. Soomere, T., Myrberg, K., Leppäranta, M. and Nekrasov, A. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 2008, 50, 287–362.

51. Lessin, G., Ossipova, V., Lips, I. and Raudsepp, U. Identification of the coastal zone of the central and eastern Gulf of Finland by numerical modeling, measurements, and remote sensing of chlorophyll a. Hydrobiologia, 2009, 692, 187–198.
doi:10.1007/s10750-009-9770-4

52. Lehmann, A., Krauss, W. and Hinrichsen, H.-H. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus, 2002, 54A, 299–316.

53. Osinski, R. and Piechura, J. Latest findings about circulation of upper layer in the Baltic Proper. In BSSC 2009 Abstract Book. Tallinn, Estonia, 2009, 103.

54. Soomere, T. and Quak, E. On the potential of reducing coastal pollution by a proper choice of the fairway. J. Coastal Res., 2007, SI 50, 678–682.

55. Funkquist, L. HIROMB, an operational eddy-resolving model for the Baltic Sea. Bulletin of the Maritime Institute. Gdańsk, 2001, No. 28, 7–16.

56. Gästgifvars, M., Ambjörn, C. and Funkquist, L. Operational modelling of the trajectory and fate of spills in the Baltic Sea. In Proc. 25th Arctic and Marine Oil-spill Program (AMOP) Technical Seminar. Calgary, Canada, 2001. Environment Canada, 2002, 1115–1130.

57. Korpinen, P., Kiirikki, M., Koponen, J., Peltoniemi, H. and Sarkkula, J. Evaluation and control of eutrophication in Helsinki sea area with the help of a nested 3D-ecohydrodynamic model. J. Marine Syst., 2004, 45, 255–265.
doi:10.1016/j.jmarsys.2003.11.008

58. Lilover, M.-J., Pavelson, J. and Kõuts, T. Wind forced currents over shallow Naissaar Bank in the Gulf of Finland. Boreal Env. Res., 2011, 16. Forthcoming.

59. Döös, K. Inter-ocean exchange of water masses. J. Geophys. Res., 1995, 100, C13499–C13514.
doi:10.1029/95JC00337

60. de Vries, P. and Döös, K. Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atmos. Oceanic Technol., 2001, 18, 1092–1101.
doi:10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2

61. Engqvist, A., Döös, K. and Andrejev, O. Modeling water exchange and contaminant transport through a Baltic coastal region. Ambio, 2006, 35, 435–447.
doi:10.1579/0044-7447(2006)35[435:MWEACT]2.0.CO;2
Back to Issue

Back issues