headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Kinetic modelling of wet oxidation treated debarking water; pp. 233–242

(Full article in PDF format) doi: 10.3176/proc.2010.3.06


Authors

Merit Kindsigo, Marjaana Hautaniemi, Juha Kallas

Abstract

The objective of the research was to compare the behaviour of two kinetic models in parameter estimation with lignin containing waters, based on experiments of wet oxidation of debarking water. When comparing the results of the models, the model with lignin included (M2) was found to be more suitable for describing the kinetics of wet oxidation of debarking water. Lignin degraded first to other chemically oxidizable compounds rather than straight to biodegradable products. The activation energies for the degradation reactions fell with a change in the pH from 5 to 12 from 51 to 21 kJ/mol and from 84 to 12 kJ/mol, respectively. This supports the experimental finding that lignin degradation is faster in basic conditions. The model could predict the degradation of lignin as well as the important wastewater parameters COD and BOD.

Keywords

wet oxidation, lignin, parameter estimation, reaction kinetics.

References

Belkacemi , K. , Larachi , F. , and Sayari , A. 2000. Lumped kinetics for solid-catalyzed wet oxidation: a versatile model. J. Catal. , 193 , 224–237.
doi:10.1006/jcat.2000.2891

Debellefontaine , H. and Foussard , J. N. 2000. Wet air oxida­tion for the treatment of industrial wastes. Chemical aspects , reactor design and industrial applications in Europe. Waste Manage. , 20 , 15–25.
doi:10.1016/S0956-053X(99)00306-2

Elvers , B. , Hawkins , S. , and Schulz , G. 1991. Ullmann’s Encyclopedia of Industrial Chemistry: Nucleic Acids to Parasympatholytics and Parasympathomimetics. 5th rev. sub. edn. , vol. A18. John Wiley & Sons.

Escalas , A. , Gonzales , M. , Baldasano , J. M. , and Gasso , S. 1997. A multicomponent kinetic model for wet oxida­tion. Chem. Oxid.: Technol. Nineties , 5 , 39–54.

Field , J. A. , Leyendeckers , M. J. H. , Sierra-Alvarez , R. , Lettinga , G. , and Habets , L. H. A. 1988. The methano­genic toxicity of bark tannins and the anaerobic biodegradability of water soluble bark matter. Water Sci. Technol. , 20 , 219–240.

Gullichen , J. and Paulapuro , H. 2000. Papermaking Science and Technology. Book 3: Forest Products Chemistry. Fapet Oy , Helsinki.

Haario , H. 1994. Modest User Manual. ProfMath Oy , Helsinki.

Kindsigo , M. and Kallas , J. 2006. Degradation of lignins by wet oxidation: model water solutions. Proc. Estonian Acad. Sci. Chem. , 55 , 132–144.

Kindsigo , M. and Kallas , J. 2009. Wet oxidation of debarking water: changes in lignin content and biodegradability. Environ. Chem. Lett. , 7 , 121–126.
doi:10.1007/s10311-008-0144-3

Kindsigo , M. , Hautaniemi , M. , and Kallas , J. 2009. Wet oxida­tion of recalcitrant lignin water solutions: experimental and reaction kinetics. Environ. Chem. Lett. , 7 , 155–160.
doi:10.1007/s10311-008-0151-4

Li , L. , Chen , P. , and Gloyna , E. F. 1991. Generalised kinetic model for wet oxidation of organic compounds. AIChE J. , 37 , 1687–1697.
doi:10.1002/aic.690371112

Lopez Bernal , J. , Portela Miguelez , J. R. , Nebot Sanz , E. , and Martinez de la Ossa , E. 1999. Wet air oxidation of oily wastes generated aboard ships: kinetic modeling. J. Hazard. Mater. , B67 , 61–73.
doi:10.1016/S0304-3894(99)00013-8

Luck , F. 1999. Wet air oxidation: past , present and future. Catal. Today , 53 , 81–91.
doi:10.1016/S0920-5861(99)00112-1

Mishira , V. S. , Mahajani , V. V. , and Joshi , J. B. 1995. Wet air oxidation. Ind. Eng. Chem. Res. , 34 , 2–48.
doi:10.1021/ie00040a001

Munter , R. 2001. Advanced oxidation processes – current status and prospects. Proc. Estonian Acad. Sci. Chem. , 50 , 59–80.

Tromans , D. 1998. Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy , 48 , 327–342.
doi:10.1016/S0304-386X(98)00007-3

Verenich , S. and Kallas , J. 2002. Wet oxidation lumped kinetic model for wastewater organic burden bio­degradability prediction. Environ. Sci. Technol. , 36 , 3335–3339.
doi:10.1021/es010244z

Verenich , S. , Roosalu , K. , Hautaniemi , M. , Laari , A. , and Kallas , J. 2005. Kinetic modeling of the promoted and unpromoted wet oxidation of debarking evaporation concentrates. Chem. Eng. J. , 108 , 101–108.
doi:10.1016/j.cej.2005.01.003

Zhang , Q. and Chuang , K. T. 1999. Lumped kinetic model for catalytic wet oxidation of organic compounds in industrial wastewater. AIChE J. , 45 , 145–150.
doi:10.1002/aic.690450112
 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December