headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Waves in materials with microstructure: numerical simulation; pp. 99–107

(Full article in PDF format) doi: 10.3176/proc.2010.2.07


Authors

Mihhail Berezovski, Arkadi Berezovski, Jüri Engelbrecht

Abstract

Results of numerical experiments are presented in order to compare direct numerical calculations of wave propagation in a laminate with prescribed properties and corresponding results obtained for an effective medium with the microstructure modelling. These numerical experiments allowed us to analyse the advantages and weaknesses of the microstructure model.

Keywords

wave propagation, microstructured solids, numerical simulations, internal variables.

References

Bale , D. S. , LeVeque , R. J. , Mitran , S. , and Rossmanith , J. A. 2003. A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comp. , 24 , 955–978.
doi:10.1137/S106482750139738X

Berezovski , A. and Maugin , G. A. 2004. On the thermodynamic conditions at moving phase-transition fronts in thermoelastic solids. J. Non-Equilib. Thermodyn. , 29 , 37–51.

Berezovski , A. , Engelbrecht , J. , and Maugin , G. A. 2008. Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific , Singapore.
doi:10.1142/9789812832689

Engelbrecht , J. and Pastrone , F. 2003. Waves in microstructured solids with nonlinearities in microscale. Proc. Estonian Acad. Sci. Phys. Math. , 52 , 12–20.

Engelbrecht , J. , Cermelli , P. , and Pastrone , F. 1999. Wave hierarchy in microstructured solids. In Geometry , Continua and Microstructure (Maugin , G. A. , ed.) , pp. 99–111. Hermann Publ. , Paris.

Engelbrecht , J. , Berezovski , A. , Pastrone , F. , and Braun , M. 2005. Waves in microstructured materials and dispersion. Phil. Mag. , 85 , 4127–4141.
doi:10.1080/14786430500362769

Fish , J. , Chen , W. , and Nagai , G. 2002. Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int. J. Numer. Methods Eng. , 54 , 331–346.
doi:10.1002/nme.423

Hoffmann , K. H. , Burzler , J. M. , and Schubert , S. 1997. Endoreversible thermodynamics. J. Non-Equil. Thermodyn. , 22 , 311–355.

Langseth , J. O. and LeVeque , R. J. 2000. A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comp. Physics , 165 , 126–166.
doi:10.1006/jcph.2000.6606

LeVeque , R. J. 1997. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comp. Physics , 131 , 327–353.
doi:10.1006/jcph.1996.5603

LeVeque , R. J. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

Maugin , G. A. 1995. On some generalizations of Boussinesq and KdV systems. Proc. Estonian Acad. Sci. Phys. Math. , 44 , 40–55.

Maugin , G. A. 1999. Nonlinear Waves in Elastic Crystals. Oxford University Press.

Metrikine , A. V. 2006. On causality of the gradient elasticity models. J. Sound Vibr. , 297 , 727–742.
doi:10.1016/j.jsv.2006.04.017

Muschik , W. and Berezovski , A. 2004. Thermodynamic interaction between two discrete systems in non-equilibrium. J. Non-Equilib. Thermodyn. , 29 , 237–255.

Santosa , F. and Symes , W. W. 1991. A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. , 51 , 984–1005.
doi:10.1137/0151049

Ván , P. , Berezovski , A. , and Engelbrecht , J. 2008. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. , 33 , 235–254.

Wang , Z.-P. and Sun , C. T. 2002. Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion , 36 , 473–485.
doi:10.1016/S0165-2125(02)00037-9
 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December