headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Travelling water waves along a quartic bottom profile; pp. 166–171

(Full article in PDF format) doi: 10.3176/proc.2010.2.16


Authors

Ira Didenkulova, Efim Pelinovsky

Abstract

The problem of transmission of wave energy in strongly inhomogeneous media is discussed with application to long water waves propagating in a basin with a quartic bottom profile. Using the linear shallow-water theory it is shown that the wave component of the flow disturbance is described by a travelling wave solution with an amplitude and phase that vary with distance. This means that the kinetic part of the wave energy propagates over large distances without reflection. Conditions for wave breaking in the nearshore are found from the asymptotic solution of the nonlinear shallow-water theory. Wave runup on a vertical wall is also studied for a quartic bottom profile.

Keywords

hydrodynamics, travelling waves, shallow water theory, quartic bottom profile, wave breaking, hyperbolic systems, exact solutions, approximated solutions.

References

Bluman , G. and Kumei , S. 1987. On invariance properties of the wave equation. J. Math. Phys. , 28 , 307318.
doi:10.1063/1.527659

Brekhovskikh , L. M. 1980. Waves in Layered Media. Academic Press , New York.

Burger , W. 1967. A note on the breaking of waves on non-uniformly sloping beach. J. Mech. Math. , 16(10) , 1131–1142.

Caputo , J.-G. and Stepanyants , Yu. A. 2003. Bore formation , evolution and disintegration into solitons in shallow inhomogeneous channels. Nonlinear Proc. Geoph. , 10 , 407–424.
doi:10.5194/npg-10-407-2003

Clements , D. L. and Rogers , C. 1975. Analytic solution of the linearized shallow-water wave equations for certain continuous depth variations. J. Aust. Math. Soc. , B 19 , 81–94.

Choi , B. H. , Pelinovsky , E. , Kim , D. C. , Didenkulova , I. , and Woo , S. B. 2008. Two- and three-dimensional computa­tion of solitary wave runup on non-plane beach. Non­linear Proc. Geoph. , 15 , 489502.
doi:10.5194/npg-15-489-2008

Didenkulova , I. 2009. Nonlinear long-wave deformation and runup in a basin of varying depth. Nonlinear Proc. Geoph. , 16(1) , 23–32.
doi:10.5194/npg-16-23-2009

Didenkulova , I. and Pelinovsky , E. 2009. Non-dispersive travel­ing waves in strongly inhomogeneous water channels. Phys. Lett. A , 373(42) , 3883–3887.
doi:10.1016/j.physleta.2009.08.051

Didenkulova , I. , Pelinovsky , E. , and Soomere , T. 2008. Exact travelling wave solutions in strongly inhomogeneous media. Estonian J. Eng. , 14 , 220–231.
doi:10.3176/eng.2008.3.03

Didenkulova , I. , Pelinovsky , E. , and Soomere , T. 2009. Long surface wave dynamics along a convex bottom. J. Geophys. Res. – Oceans , 114 , C07006.
doi:10.1029/2008JC005027

Dingemans , M. W. 1996. Water Wave Propagation over Uneven Bottom. World Scientific , Singapore.

Engelbrecht , J. K. , Fridman , V. E. , and Pelinovsky , E. N. 1988. Nonlinear Evolution Equations (Pitman Research Notes in Mathematics Series , No. 180). Long­man , London.

Ginzburg , V. L. 1970. Propagation of Electromagnetic Waves in Plasma. Pergamon Press , New York.

Grimshaw , R. , Pelinovsky , D. , and Pelinovsky , E. 2010. Homo­genization of the variable-speed wave equation. Wave Motion.
doi:10.1016/j.wavemoti.2010.03.001

Gurtin , M. E. 1975. On the breaking of water waves on a sloping beach of arbitrary shape. Quart. Appl. Math. , 33 , 187–189.

Ibragimov , N. H. and Rudenko , O. V. 2004. Principle of an a priori use of symmetries in the theory of nonlinear waves. Acoust. Phys. , 50 , 406419.
doi:10.1134/1.1776218

Mei , C. C. , Stiassnie , M. , and Yue , D. K.-P. 2005. Theory and Applications of Ocean Surface Waves. World Scientific , Singapore.

Magaard , L. 1962. Zur Berechnung interner Wellen in Meeres­räumen mit nicht-ebenen Böden bei einer speziellen Dichteverteilung. Kiel. Meeresforsch. , 18 , 161–183.

Pelinovsky , E. N. 1982. Nonlinear Dynamics of Tsunami Waves. Applied Physics Institute Press , Gorky.

Synolakis , C. E. 1987. The runup of solitary waves. J. Fluid Mech. , 185 , 523–545.
doi:10.1017/S002211208700329X

Varley , E. , Venkataraman , R. , and Cumberbatch , E. 1971. The propagation of large amplitude tsunamis across a basin of changing depth. I. Off-shore behaviour. J. Fluid Mech. , 49 , 775801.
doi:10.1017/S0022112071002362

Vlasenko , V. I. 1987. Internal wave generation in the stratified ocean of variable depth. Izv. Atmos. Oceanic Phys. , 23 , 225–230.
 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December