headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Energy budget in a dispersive model for undular bores; pp. 172–181

(Full article in PDF format) doi: 10.3176/proc.2010.2.17


Authors

Henrik Kalisch, Magnar Bjørkavåg

Abstract

Energy conservation properties of weak bores in free-surface flows are considered. The energy loss in the shallow-water theory for an undular bore is thought to be due to upstream oscillations that carry away the energy lost at the front of the bore. Using a higher-order dispersive model equation, this expectation is confirmed through a quantitative study, which shows that there is no energy loss if dispersion is accounted for.

Keywords

energy integral, undular bore, energy loss, dispersion, Boussinesq system.

References

  1. Benjamin , T. B. and Lighthill , M. J. On cnoidal waves and bores. Proc. Roy. Soc. Lond. , 1954 , A 224 , 448–460.

  2. Benjamin , T. B. , Bona , J. B. , and Mahony , J. J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. Lond. , 1972 , A 272 , 47–78.

  3. Binnie , A. M. and Orkney , J. C. Experiments on the flow of water from a reservoir through an open channel. II. The formation of hydraulic jumps. Proc. Roy. Soc. Lond. , 1955 , A 230 , 237–246.

  4. Bona , J. L. and Schonbek , M. E. Travelling-wave solutions to the Korteweg–de Vries–Burgers equation. Proc. Roy. Soc. Edinb. , 1985 , A 101 , 207–226.

  5. Bona , J. L. , Rajopadhye , S. V. , and Schonbek , M. E. Models for propagation of bores. I. Two-dimensional theory. Diff. Int. Eq. , 1994 , 7 , 699–734.

  6. Bona , J. L. , Chen , M. , and Saut , J.-C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci. , 2002 , 12 , 283–318.
doi:10.1007/s00332-002-0466-4

  7. Byatt-Smith , J. G. B. The effect of laminar viscosity on the solution of the undular bore. J. Fluid Mech. , 1971 , 48 , 33–40.
doi:10.1017/S0022112071001459

  8. Castro-Orfaz , O. and Hager , W. H. Classical hydraulic jump: basic flow features. J. Hydr. Res. , 2009 , 47 , 744–754.

  9. Chen , M. Exact solutions of various Boussinesq systems. Appl. Math. Lett. , 1998 , 11 , 45–49.
doi:10.1016/S0893-9659(98)00078-0

10. El , G. A. , Grimshaw , R. H. J. , and Kamchatnov , A. M. Analytic model for a frictional shallow-water undular bore. Chaos , 2005 , 15 , 037102.
doi:10.1063/1.1914743

11. El , G. A. , Khodorovskii , V. V. , and Tyurina , A. V. Undular bore transition in bi-directional conservative wave dynamics. Physica D , 2005 , 206 , 232–251.
doi:10.1016/j.physd.2005.05.010

12. El , G. A. , Grimshaw , R. H. J. , and Smyth , N. F. Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids , 2006 , 18 , 027104.
doi:10.1063/1.2175152

13. Favre , H. Etude théorique et expérimentale des ondes de translation dans les canaux découverts. Dunod , Paris , 1935.

14. Grillhofer , W. and Schneider , W. The undular hydraulic jump in turbulent open channel flow at large Reynolds numbers. Phys. Fluids , 2003 , 15 , 730.
doi:10.1063/1.1538249

15. Grujić , Z. and Kalisch , H. A bound on oscillations in an unsteady undular bore. Appl. Anal. , 2009 , 88 , 1701–1712.
doi:10.1080/00036810903397412

16. Johnson , R. S. Shallow water waves on a viscous fluid – the undular bore. Phys. Fluids , 1972 , 15 , 1693–1699.
doi:10.1063/1.1693764

17. Johnson , R. S. A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press , Cambridge , 1997.
doi:10.1017/CBO9780511624056

18. Koch , C. and Chanson , H. Unsteady turbulence characteristics in an undular bore. In River Flow 2006. Taylor & Francis Group , London , 2006.

19. Lemoine , R. Sur les ondes positives de translation dans les canaux et sur le ressaut ondulé de faible amplitude. Houille Blanche , 1948 , Mar.–Apr. , 183–185.

20. Peregrine , P. G. Calculations of the development of an undular bore. J. Fluid Mech. , 1966 , 25 , 321–330.
doi:10.1017/S0022112066001678

21. Rajopadhye , S. V. Some models for the propagation of bores. J. Diff. Eq. , 2005 , 217 , 179–203.
doi:10.1016/j.jde.2005.06.015

22. Rayleigh , Lord. On the theory of long waves and bores. Proc. Roy. Soc. Lond. , 1914 , A 90 , 324–328.

23. Sturtevant , B. Implications of experiments on the weak undular bore. Phys. Fluids , 1965 , 6 , 1052–1055.
doi:10.1063/1.1761354

24. Whitham , G. B. Linear and Nonlinear Waves. Wiley , New York , 1974.
 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December