ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
In situ tensile testing in SEM of Al-Al4C3 nanomaterials; pp. 247–254
PDF | doi: 10.3176/eng.2009.4.01

Authors
Michal Besterci, Oksana Velgosová, Jozef Ivan, Pavol Hvizdoš, Tibor Kvačkaj, Priit Kulu
Abstract
The deformation and fracture mechanisms of Al-Al4C3 nanomaterials with 4 vol% of Al4C3 phase has been analysed using the technique “in situ tensile testing in SEM”. It has been shown that the deformation process causes break-up of large Al4C3 particles and decohesion of smaller ones. The final fracture path is influenced also by boundaries of nanograins, through which the principal crack propagates towards the sample exterior surface. Based on the experimental observations, a model of damage and fracture mechanisms has been proposed.
References

  1. Besterci, M. and Ivan, J. Failure mechanism of dispersion strengthened Al-Al4C3 systems. J. Mater. Sci. Lett., 1996, 15, 2071–2074.

  2. Besterci, M. and Ivan, J. The mechanism of the failure of the dispersion-strengthened Cu–Al2O3 system. J. Mater. Sci. Lett., 1998, 17, 773–776.
doi:10.1023/A:1006639700906

  3. Besterci, M., Ivan, J., Kováč, L., Weissgaerber, T. and Sauer, C. Strain and fracture mechanism of Cu–TiC. Mater. Lett., 1999, 38, 270–274.
doi:10.1016/S0167-577X(98)00171-2

  4. Besterci, M., Ivan, J., Kováč, L., Weissgaerber, T. and Sauer, C. A model of deformation mechanism of the system Cu-TiC. Kovové Mater., 1998, 36, 239–244.

  5. Besterci, M., Ivan, J. and Kováč, L. Influence of volume fraction of Al2O3 particles on fracture of the Cu-Al2O3 system. Kovové Mater., 2000, 38, 21–28.

  6. Besterci, M., Ivan, J. and Kováč, L. Influence of Al2O3 particles volume fraction on fracture mechanism in the Cu–Al2O3 system. Mater. Lett., 2000, 46, 181–184.
doi:10.1016/S0167-577X(00)00164-6

  7. Besterci, M., Ivan, J., Velgosová, O. and Pešek, L. Damage mechanism of Al-Al4C3 system with high volume fraction of secondary phase. Kovové Mater., 2001, 39, 361–367.

  8. Besterci, M., Velgosová, O., Ivan, J., Hvizdoš, P. and Kohútek, I. Influence of volume fraction on fracture mechanism of Al-Al4C3 system studied by “in-situ tensile test in SEM”. Kovové Mater, 2008, 46, 139–143.

  9. Mocellin, A., Fougerest, F. and Gobin, P. F. J. A study of damage under tensile loading in a new Al-Si-Fe alloy processed by the Osprey route. Mater. Sci., 1993, 28, 4855–4861.
doi:10.1007/BF00361147

10. Velísek, R. and Ivan, J. Mechanism of “in-situ deformation in SEM” Al-Si system. Kovové Mater., 1994, 32, 531–539.

11. Jangg, G., Šlesár, M., Besterci, M., Ďurišin, J. and Schröder, K. Influence of heat treatment during manufacturing of Al-Al4C3 materials on microstructure and properties. Powder Metallurgy Int., 1989, 5, 25–30.

12. Jangg, G., Zbiral, J. and Wu, S. Einfluß des Mahlens und der Wärmebehandlung bei Strang­preßprodukten aus dispersionsverfestigten Al-Al4C3 Werkstoffen. Aluminium, 1992, 68, 238–246.

13. Broutman, L. V. and Krock, R. H. Analysis of deformation of Al-Si system. Compos. Mater., 1974, 5, 27–38.

14. Jangg, G., Vasgura, H., Schröder, K., Šlesár, M. and Besterci, M. In Proc. Int. Conference on Powder Metallurgy PM 86. Düsseldorf, 1986, 989–999.

15. Korb, G., Jangg, G. and Kutner, F. Dispersionsverfestigte Al-Al4C3 Werkstoffe. Draht, 1979, 30, 318–327.

16. Šalunov, J., Šlesár, M., Besterci, M., Oppenheim, H. and Jangg, G. Einfluss der Herstellungs­bedingungen auf die Eigenschaften von dispersionsverfestigten Al-Al4C3 Werkstoffen. Metall, 1986, 6, 601–609.

17. Besterci, M., Sülleiová, K. and Kvačkaj, T. Fracture micromechanisms of copper nanomaterials prepared by ECAP. Kovové Mater., 2008,46, 309–311.

18. Lukáč, P. and Trojanová, Z. Deformation and damping behaviours of microcrystalline Mg reinforced with ceramic nanoparticles. Kovové Mater., 2006, 44, 243–249.

19. Valiev, R. Z. Approach to nanostructured solids through the studies of submicron grained polycrystals. Nanostruct. Mater., 1995, 6, 73–85.
doi:10.1016/0965-9773(95)00031-3

20. Valiev, R. Z. In Proc. Metallic Materials with High Structural Efficiency. NATO Science Series, Kiev (Senkov, O. N., Miracle, D. B. and Firstov, S. A., eds.). IOS Press, Amsterdam and Kluwer Acad. Publ., Dordrecht, 2003, 79–89.

21. Zhu, Y. T., Huang, J. Y., Gubicza, J., Ungár, T., Wang, Y. M., Ma, E. and Valiev, R. Z. Nano­structures in Ti processed by severe plastic deformation. J. Mater. Res., 2002, 18, 1908–1917.
doi:10.1557/JMR.2003.0267

22. Valiev, R. Z. and Alexandrov, I. V. Nanostrukturnye Materialy Poluchennye Intensivnoj Plasticheskoj Deformaciej. Logos, Moscow, 2000 (in Russian).

23. Kozlov, E. V. and Koneva, M. V. Features of work hardening of polycrystals with nanograins. Mater. Sci. Forum, 2008, 35, 584–586.
Back to Issue

Back issues