headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 26, Issue 4
Vol. 26, Issue 3
Vol. 26, Issue 3S
Vol. 26, Issue 2
Vol. 26, Issue 1
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

CONDITON OF STRUCTURES AND PROPERTIES OF CONCRETE OF AN EXISTING OIL SHALE CHEMICAL PLANT; pp. 513–529

(Full article in PDF format) doi: 10.3176/oil.2009.4.07


Authors

M. KIVISTE, J. MILJAN, R. MILJAN, M. KIPRUSHENKOV †

Abstract

A case study for investigating the condition of concrete structures and properties of concrete of an existing oil-shale chemical plant is presented. The condition of concrete structures in the plant (constructed in 1951) was assessed visually on a six-point scale. It was found on visual inspection that concrete structures with cracked or spalled concrete cover need extensive repairs. Compressive strength of cores, carbonation depth, cover, water absorp­tion as well as sulphate, chloride and nitrate content in concrete were determined. According to the results suggestions were proposed to repair deteriorated concrete structures in the plant.



References

  1. Raukas , A. Oil shale industry and sustainability – governance through dialogue // Oil Shale. 2005. Vol. 22 , No. 1. P. 3–4.

  2. Jiang , X. M. , Han , X. X. , Cui , Z. G. New technology for the comprehensive utilization of Chinese oil shale resources // Energy. 2007. Vol. 32 , No 5. P. 772–777.

  3. Razvigorova , M. , Budinova , T. , Petrova , B. , Tsyntsarski , B. , Ekinci , E. , Fer­hat , M. F. Steam pyrolysis of Bulgarian oil shale kerogen // Oil Shale. 2008. Vol. 25 , No 1. P. 27–36.

  4. Klevtsov  I. , Tallermo , H. , Bojarinova , T. , Dedov , A. Assessment of remaining life of superheater austenitic steel tubes in oil shale PF boilers // Oil Shale. 2006. Vol. 23 , No. 3. P. 267–274.

  5. Tallermo , H. , Klevtsov , I. High-temperature corrosion of martensitic and austenitic steels under on-tube oil shale ash deposits // Oil Shale. 2002. Vol. 19 , No. 1. P. 19–33.

  6. Ots , A. , Paist , A. Laboratory investigations of high temperature corrosion of boiler alloys under the impact of Estonian oil shale ash // Oil Shale. 1997. Vol. 14 , No. 3 Special. P. 236–245.

  7. Ellingwood , B. R. , Mori , Y. Reliability-based service life assessment of concrete structures in nuclear power plants: optimum inspection and repair // Nucl. Eng. Des. 1997. Vol. 175 , No. 3. P. 247–258.
doi:10.1016/S0029-5493(97)00042-3

  8. Braverman , J. I. , Miller , C. A. , Hofmayer , C. H. , Ellingwood , B. R. , Naus , D. J. , Chang , T. Y. Degradation assessment of structures and passive components at nuclear power plants // Nucl. Eng. Des. 2004. Vol. 228 , No. 1–3. P. 283–304.
doi:10.1016/j.nucengdes.2003.06.012

  9. Naus , D. J. , Oland , C. B. , Ellingwood , B. R. , Hookham , C. J. , Graves III , H. L. Summary and conclusions of a program addressing aging of nuclear power plant concrete structures // Nucl. Eng. Des. 1999. Vol. 194 , No. 1. P. 73–96.
doi:10.1016/S0029-5493(99)00170-3

10. Sasmal , S. , Ramanjaneyulu , K. Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach // Expert Syst. Appl. 2008. Vol. 35 , No. 3. P. 1430–1443.
doi:10.1016/j.eswa.2007.08.017

11. Stewart , M. G. Reliability-based assessment of ageing bridges using risk ranking and life cycle cost decision analyses // Reliab. Eng. Syst. Saf. 2001. Vol. 74 , No. 3. P. 263–273.
doi:10.1016/S0951-8320(01)00079-5

12. Enright , M. P. , Frangopol , D. M. Reliability-based condition assessment of deteriorating concrete bridges considering load redistribution // Struct. Saf. 1999. Vol. 21 , No. 2. P. 159–195.
doi:10.1016/S0167-4730(99)00015-6

13. Kiprushenkov , M. , Miljan , J. , Kiviste , M. , Miljan , R. Condition assessment of concrete structures in chemical plants gas generator building // Proc. 5th Int. Conf. Concrete Under Severe Conditions Environment and Loading , Tours-France , LCPC , France , 2007. P. 223–230.

14. Harris , S. Y. Building Pathology: Deterioration , Diagnostics , and Intervention. – New York: John Wiley & Sons , Inc. , 2001. 654 p.

15. Alekseyev , S. N. , Rozental , N. K. Corrosion Durability of Reinforced Concrete Structures in Industrial Environment. – Moscow: Stroiizdat , 1976. 205 p. [in Russian].

16. Alekseyev , S. N. , Ivanov , F. M. , Modrõ , C. , Schiessel , P. Durability of Rein­forced Concrete in Aggressive Environment. – Moscow: Stroiizdat , 1990. 314 p. [in Russian].

17. Miljan , J. , Keskküla , T. Durability prediction of reinforced concrete structures in cattle-breeding buildings. In: Questions about the Reliability of Reinforced Concrete Structures. – Kuiboshev , 1975. P. 120–122 [in Russian].

18. EVS-EN 12504-1:2003 Testing concrete in structures. Part 1: Cored specimens. Taking , examining and testing in compression. – Tallinn: Estonian Centre of Standardisation , 2003. 11 p. [in Estonian].

19. EVS-EN 12390-3:2002 Testing hardened concrete. Part 3: Compressive strength of test specimens. – Tallinn: Estonian Centre of Standardisation , 2002. 18 p. [in Estonian].

20. BS 6089:1981 Guide to Assessment of Concrete Strength in Existing Structures. – UK: British Standard Institution , 1981. 16 p.

21. EVS-EN 14630:2006 Products and systems for the protection and repair of concrete structures. Test methods. Determination of carbonation depth in hardened concrete by the phenolphthalein method. – Tallinn: Estonian Centre of Standardisation , 2006. 15 p.

22. DIN 51100 Testing of ceramic raw materials and materials; determination of the soluble salts (percolator method). – Berlin: German Institute for Standardiza­tion , 1957. 30 p. [in German].

23. GOST 12730-67 Heavy concrete. Methods for determination density , porosity and water absorption. Concrete and reinforced concrete products. Methods of testing. – Moscow: Standards Publishing , 1974. P. 115–122 [in Russian].

24. EVS-EN 13791:2007 Assessment of in-situ compressive strength in structures and precast concrete components. – Tallinn: Estonian Centre of Standardisation , 2007. 28 p.

25. EVS-EN 206-1:2007 Concrete Part 1: Specification , performance , production and conformity. – Tallinn: Estonian Centre of Standardisation , 2007. 82 p. [in Estonian].

26. Neville , A. M. Properties of Concrete. – London , etc.: John Wiley & Sons , Inc. , 1995. 844 p.

27. Kiviste , M. , Miljan , J. Structural concrete compressive strength determination with rebound hammer // Vagos. 2007. No. 74 (27). P. 15–20.

28. Arioz , O. , Ramyar , K. , Tuncan , M. , Tuncan , A. , Cil , I. Some factors influencing effect of core diameter on measured concrete compressive strength // ACI Materials J. 2007. Vol. 104 , No. 3. P. 291–296.

29. Parrot , L. J. , Killoch , D. C. Carbonation in a 36 year old , in-situ concrete // Cement Concrete Res. 1989. Vol. 19 , No. 4. P. 649–656.
doi:10.1016/0008-8846(89)90017-3

30. WTA Guidelines 4-5-99/D: Evaluation of Masonry. – Munich: WTA Publica­tions , 1999. 16 p. [in German].

31. SNIP 2.03.11-85 Corrosion Protection of Building Structures. – Moscow , 1985. 45 p. [in Russian].

32. Rooks , I. From the First Oil Shale Industry to Kiviter: 1938–1998 Memories and Facts. – Kohtla-Järve , 2004. 132 p. [in Estonian].

 
Back

Current Issue: Vol. 36, Issue 2S, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December