headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 58, Issue 4
Vol. 58, Issue 3
Vol. 58, Issue 2
Vol. 58, Issue 1
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Strong minimizers of the calculus of variations on time scales and the Weierstrass condition; pp. 205–212

(Full article in PDF format) doi: 10.3176/proc.2009.4.02


Authors

Agnieszka B. Malinowska, Delfim F. M. Torres

Abstract

We introduce the notion of strong local minimizer for the problems of the calculus of variations on time scales. Simple examples show that on a time scale a weak minimum is not necessarily a strong minimum. A time scale form of the Weierstrass necessary optimality condition is proved, which enables to include and generalize in the same result both continuous-time and discrete-time conditions.

Keywords

calculus of variations, time scales, strong minimizers, Weierstrass optimality condition.

References

  1. Almeida , R. and Torres , D. F. M. Isoperimetric problems on time scales with nabla derivatives. J. Vib. Control , 2009 , 15 , 951–958.
doi:10.1177/1077546309103268

  2. Atici , F. M. , Biles , D. C. , and Lebedinsky , A. An application of time scales to economics. Math. Comput. Model. , 2006 , 43 , 718–726.
doi:10.1016/j.mcm.2005.08.014

  3. Atici , F. M. and Uysal , F. A production-inventory model of HMMS on time scales. Appl. Math. Lett. , 2008 , 21 , 236–243.
doi:10.1016/j.aml.2007.03.013

  4. Bangerezako , G. Variational q-calculus. J. Math. Anal. Appl. , 2004 , 289 , 650–665.
doi:10.1016/j.jmaa.2003.09.004

  5. Bartosiewicz , Z. and Torres , D. F. M. Noether’s theorem on time scales. J. Math. Anal. Appl. , 2008 , 342 , 1220–1226.
doi:10.1016/j.jmaa.2008.01.018

  6. Bohner , M. Calculus of variations on time scales. Dynam. Syst. Appl. , 2004 , 13 , 339–349.

  7. Bohner , M. and Guseinov , G. Sh. Riemann and Lebesgue integration. In Advances in Dynamic Equations on Time Scales (Bohner , M. and Peterson , A. C. , eds). Birkhäuser Boston , Boston , MA , 2003 , 117–163.

  8. Bohner , M. and Guseinov , G. Sh. Partial differentiation on time scales. Dynam. Syst. Appl. , 2004 , 13 , 351–379.

  9. Bohner , M. and Guseinov , G. Sh. Double integral calculus of variations on time scales. Comput. Math. Appl. , 2007 , 54 , 45–57.
doi:10.1016/j.camwa.2006.10.032

10. Bohner , M. and Peterson , A. (eds) Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston , Boston , MA , 2001.

11. Bohner , M. and Peterson , A. (eds) Advances in Dynamic Equations on Time Scales. Birkhäuser Boston , Boston , MA , 2003.

12. Brechtken-Manderscheid , U. Introduction to the Calculus of Variations. Translated from the German by P. G. Engstrom. Chapman & Hall , London , 1991.

13. Ferreira , R. A. C. and Torres , D. F. M. Remarks on the calculus of variations on time scales. Int. J. Ecol. Econ. Stat. , 2007 , 9 , 65–73.

14. Ferreira , R. A. C. and Torres , D. F. M. Higher-order calculus of variations on time scales. In Mathematical Control Theory and Finance. Springer , Berlin , 2008 , 149–159.

15. Hilscher , R. and Zeidan , V. Calculus of variations on time scales: weak local piecewise C1rd solutions with variable endpoints. J. Math. Anal. Appl. , 2004 , 289 , 143–166.
doi:10.1016/j.jmaa.2003.09.031

16. Hilscher , R. and Zeidan , V. Weak maximum principle and accessory problem for control problems on time scales. Nonlinear Anal. , 2009 , 70 , 3209–3226.
doi:10.1016/j.na.2008.04.025

17. Kac , V. and Cheung , P. Quantum Calculus. Springer , New York , 2002.

18. Kelley , W. G. and Peterson , A. C. Difference Equations. Academic Press , Boston , MA , 1991.

19. Leitmann , G. The Calculus of Variations and Optimal Control. Plenum , New York , 1981.

20. Malinowska , A. B. and Torres , D. F. M. Necessary and sufficient conditions for local Pareto optimality on time scales. J. Math. Sci. (N. Y.) , 2009 , in press.
doi:10.1007/s10958-009-9601-1

21. Martins , N. and Torres , D. F. M. Calculus of variations on time scales with nabla derivatives. arXiv:0807.2596v1[math.OC]
doi: 10.1016/j.na.2008.11.035.

22. Seiffertt , J. , Sanyal , S. , and Wunsch , D. C. Hamilton–Jacobi–Bellman equations and approximate dynamic programming on time scales. IEEE Trans. Syst. Man Cybern. , Part B: Cybern. , 2008 , 38 , 918–923.
doi:10.1109/TSMCB.2008.923532

 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December