headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 58, Issue 4
Vol. 58, Issue 3
Vol. 58, Issue 2
Vol. 58, Issue 1
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

WebMathematica-based tools for discrete-time nonlinear control systems; pp. 224–240

(Full article in PDF format) doi: 10.3176/proc.2009.4.04


Authors

Maris Tõnso, Heli Rennik, Ülle Kotta

Abstract

The package NLControl, developed in the Institute of Cybernetics at Tallinn University of Technology within the Mathematica environment, has been made partially available over the internet using webMathematica tools. The package consists of functions that assist the solution of different modelling, analysis, and synthesis problems for nonlinear control systems, described either by state or by input-output equations. This paper focuses on describing the webMathematica-based tools for discrete-time nonlinear control systems.

Keywords

nonlinear control systems, webMathematica, symbolic computations, algebraic framework.

References

Aranda-Bricaire , E. and Kotta , Ü. A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems. Kybernetika , 2004 , 40 , 197–206.

Aranda-Bricaire , E. , Kotta , Ü , and Moog , C. Linearization of discrete-time systems. SIAM J. Control Optim. , 1996 , 34 , 1999–2023.
doi:10.1137/S0363012994267315

Baheti , R. , Mohler , R. , and Spang , H. Second-order correlation method for bilinear system identification. IEEE Trans. Autom. Control , 1980 , 25 , 1141–1146.
doi:10.1109/TAC.1980.1102516

Conte , G. , Moog , C. , and Perdon , A. Algebraic Methods for Nonlinear Control Systems. Springer , London , 2007.

de Jager , B. The use of symbolic computations in nonlinear control. Is it viable? IEEE Trans. Autom. Control , 1995 , 40 , 84–89.
doi:10.1109/9.362897

Fliess , M. Automatique en temps discret et algèbre aux différences. Forum Math. , 1990 , 2 , 213–232.

Isidori , A. Nonlinear Control Systems (3rd ed.). Springer , Berlin , 1995.

Kaddouri , A. , Blais , S. , Ghribi , M. , and Akhrif , O. NLSOFT: An interactive graphical software for designing nonlinear controllers. Math. Comput. Simulation , 2006 , 71 , 377–384.
doi:10.1016/j.matcom.2006.02.016

Kazantzis , N. and Kravaris , C. Discrete-time nonlinear observer design using functional equations. Systems Control Lett. , 2001 , 42 , 81–94.
doi:10.1016/S0167-6911(00)00071-2

Kotta , Ü. Comments on “On the discrete-time normal form”. IEEE Trans. Autom. Control , 2000 , 45 , 2197.
doi:10.1109/9.887696

Kotta , Ü. Decomposition of discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math. , 2005 , 54 , 154–161.

Kotta , Ü. and Nurges , Ü. Identification of input-output bilinear systems. In A Bridge Between Control Science and Technology: Proceedings of the Ninth Triennial World Congress of IFAC , Budapest , Hungary , 2–6 July 1984 , Vol. 2 (Gertler , J. and Keviczky , L. , eds). Pergamon , Oxford , 1985 , 723–727 (IFAC Proceedings series , 1985 , 1).

Kotta , Ü. and Tõnso , M. Transfer equivalence and realization of nonlinear higher order input/output difference equations using Mathematica. J. Circuits Systems Comput. , 1999 , 9 , 23–25.
doi:10.1142/S0218126699000049

Kotta , Ü. and Tõnso , M. Linear algebraic tools for discrete-time nonlinear control systems with Mathematica. In Nonlinear and Adaptive Control , NCN4 2001 (Zinober , A. and Owens , D. , eds) , Lecture Notes in Control and Inform. Sci. , 2003 , 281 , 195–205 , Springer , Berlin.

Kotta , Ü. and Tõnso , M. Irreducibility conditions for discrete-time nonlinear multi-input multi-output systems. In 6th IFAC Symposium on Nonlinear Control Systems (NOLCOS) (Allgöwer , F. , ed.). Stuttgart , Germany , 2004 , 269–274.

Kotta , Ü. and Tõnso , M. Realization of discrete-time nonlinear input-output equations: polynomial approach. In 7th World Congress on Intelligent Control and Automation , Chongqing , China. IEEE , 2008 , 529–534.

Kotta , Ü. , Zinober , A. , and Liu , P. Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica , 2001 , 37 , 1771–1778.
doi:10.1016/S0005-1098(01)00144-3

Kujan , P. , Hromčik , M. , and Šebek , M. Web-based Mathematica platform for systems and control education. In Proceedings of the 13th Mediterranean Conference on Control and Automation , Limassol , Cyprus. IEEE , Limassol , 2005 , 376–381.

Nijmeijer , H. and van der Schaft , A. Nonlinear Dynamical Control Systems. Springer , New York , 1990.

Ondera , M. and Huba , M. Web-based tools for exact linearization control design. In Proceedings of the 14th IEEE Mediterranean Conference on Control and Automation , Ancona , Italy , 28–30 June 2006. IEEE (CD ROM).

Ore , O. Theory of non-commutative polynomials. Annals Math. , 1933 , 34 , 480–508.
doi:10.2307/1968173

Rodrigues-Millan , J. Integrated symbolic-graphic-numeric analysis and design in nonlinear control through notebooks in Mathematica. Lecture Notes in Comput. Sci. , 2001 , 2178 , 405–420. Springer-Verlag , Berlin.
doi:10.1007/3-540-45654-6_32

Rothfuβ , R. and Zeitz , M. A toolbox for symbolic nonlinear feedback design. In Proceedings of the 13th World Congress , International Federation of Automatic Control. Vol. F. Nonlinear Systems II (Gertler , J. J. , Cruz , J. B. , Jr. , Peshkin , M. , Bitmead , R. , and Isidori , A. , eds). Pergamon , Oxford , 1997 , 283–288.

 
Back

Current Issue: Vol. 68, Issue 2 in Press, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December