headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 58, Issue 4
Vol. 58, Issue 3
Vol. 58, Issue 2
Vol. 58, Issue 1
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

On modelling wave motion in microstructured solids; pp. 241–246

(Full article in PDF format) doi: 10.3176/proc.2009.4.05


Authors

Merle Randrüüt, Andrus Salupere, Jüri Engelbrecht

Abstract

The Mindlin-type model is used for describing the longitudinal deformation waves in microstructured solids. The evolution equation (one-wave equation) is derived for the hierarchical governing equation (two-wave equation) in the nonlinear case using the asymptotic (reductive perturbation) method. The evolution equation is integrated numerically under harmonic as well as localized initial conditions making use of the pseudospectral method. Analysis of the results demonstrates that the derived evolution equation is able to grasp essential effects of microinertia and elasticity of a microstructure. The influence of these effects can result in the emergence of asymmetric solitary waves.

Keywords

nonlinear wave motion, microstructure, hierarchy of waves, evolution equations.

References

  1. Engelbrecht , J. and Pastrone , F. Waves in microstructured solids with strong nonlinearities in microscale. Proc. Estonian Acad. Sci. Phys. Math. , 2003 , 52 , 12–20.

  2. Engelbrecht , J. , Berezovski , A. , Pastrone , F. , and Braun , M. Waves in microstructured materials and dispersion. Phil. Mag. , 2005 , 85 , 4127–4141.
doi:10.1080/14786430500362769

  3. Engelbrecht , J. , Pastrone , F. , Braun , M. , and Berezovski , A. Hierarchies of waves in nonclassical materials. In The Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluations and Ultrasonics (Delsanto , P. P. , ed.). Springer , Berlin , 2006 , 29–48.

  4. Eringen , A. Microcontinuum Field Theories. I Foundations and Solids. Springer , New York , 1999.

  5. Fornberg , B. Practical Guide to Pseudospectral Methods. Cambridge University Press , Cambridge , 1998.

  6. Gates , T. S. , Odegard , G. M. , Frankland , S. J. V. , and Clancy , T. C. Computational materials: multiscale modeling and simulation of nanostructured materials. Compos. Sci. Technol. , 2005 , 65 , 2416–2434.
doi:10.1016/j.compscitech.2005.06.009

  7. Giovine , P. and Oliveri , F. Dynamics and wave propagation in dilatant granular materials. Meccanica , 1995 , 30 , 341–357.
doi:10.1007/BF00993418

  8. Janno , J. and Engelbrecht , J. An inverse solitary wave problem related to microstructured materials. Inverse Probl. , 2005 , 21 , 2019–2034.
doi:10.1088/0266-5611/21/6/014

  9. Janno , J. and Engelbrecht , J. Solitary waves in nonlinear microstructured materials. J. Phys. A: Math. Gen. , 2005 , 38 , 5159–5172.
doi:10.1088/0305-4470/38/23/006

10. Janno , J. and Engelbrecht , J. Waves in microstructured solids: inverse problems. Wave Motion , 2005 , 43 , 1–11.
doi:10.1016/j.wavemoti.2005.04.006

11. Maugin , G. Nonlinear Waves in Elastic Crystals. Oxford University Press , Oxford , 1999.

12. Mindlin , R. D. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. , 1964 , 16 , 51–78.
doi:10.1007/BF00248490

13. Newell , A. C. Solitons in Mathematics and Physics. Society for Industrial and Applied Mathematics , Philadelphia , 1985.

14. Randrüüt , M. and Braun , M. On one-dimensional solitary waves in microstructured solids. Wave Motion (submitted).

15. Salupere , A. , Engelbrecht , J. , and Peterson , P. Long-time behaviour of soliton ensembles. Part I – Emergence of ensembles. Chaos Solitons Fractals , 2002 , 14 , 1413–1424.
doi:10.1016/S0960-0779(02)00069-3

16. Salupere , A. , Engelbrecht , J. , and Peterson , P. Long-time behaviour of soliton ensembles. Part II – Periodical patterns of trajectories. Chaos Solitons Fractals , 2003 , 15 , 29–40.
doi:10.1016/S0960-0779(02)00070-X

17. Salupere , A. , Tamm , K. , and Engelbrecht , J. Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Non-Linear Mech. , 2008 , 43 , 201–208.
doi:10.1016/j.ijnonlinmec.2007.12.011

18. Salupere , A. , Tamm , K. , Engelbrecht , J. , and Peterson , P. On the interaction of deformation waves in microstructured solids. Proc. Estonian Acad. Sci. Phys. Math. , 2007 , 56 , 93–99.

19. Sun , C. T. , Achenbach , J. D. , and Herrmann , G. Continuum theory for a laminated medium. J. Appl. Mech. Trans. ASME , 1968 , 35(3) , 467–475.

20. Taniuti , T. and Nishihara , K. Nonlinear Waves. Pitman , Boston , 1983.

21. Whitham , G. Linear and Nonlinear Waves. John Wiley & Sons , New York , 1974.
 
Back

Current Issue: Vol. 68, Issue 2 in Press, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December