headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 58, Issue 4
Vol. 58, Issue 3
Vol. 58, Issue 2
Vol. 58, Issue 1
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Removing the input derivatives in the generalized bilinear state equations; pp. 98–107

(Full article in PDF format) doi: 10.3176/proc.2009.2.02


Authors

Tanel Mullari, Ülle Kotta, Palle Kotta, Maris Tõnso, Alan S. I. Zinober

Abstract

The paper suggests constraints on the coefficients ai, bi, cij of the bilinear continuous-time input-output model that yield generalized state equations with input derivative order lower than that in the input-output equations. In the limiting case when one removes the input derivatives altogether, these conditions provide a solution of the realizability problem. The new state coordinates are found step by step. We first find a coordinate transformation allowing the reduction of the maximal order of the input time derivatives by one and write the corresponding state equations. At the second step we find the next coordinate transformation to lower the maximal order of input time derivative in the new state equations, etc. At each step we check, what condition the coefficients should satisfy to make the next step possible.

Keywords

control systems, bilinear systems, differential input-output equations, state-space realization.

References

  1. Van der Schaft , A. J. On realization of nonlinear systems described by higher-order differential equations. Math. Syst. Theory , 1987 , 19 , 239–275.
doi:10.1007/BF01704916

  2. Crouch , P. and Lamnabhi-Lagarrique , F. State space realizations of nonlinear systems defined by input-output differential equations. In Analysis and Optimization Systems (Bensousan , A. and Lion , J. , eds) , Lecture Notes in Control and Inform. Sci. , 1988 , 111 , 138–149.

  3. Glad , S. T. Nonlinear state space and input-output descriptions using differential polynomials. In New Trends in Nonlinear Control Theory (Descusse , J. , Fliess , M. , Isidori , A. , and Leborne , P. , eds) , Lecture Notes in Control and Inform. Sci. , 1989 , 122 , 182–189.

  4. Delaleau , E. and Respondek , W. Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control , 1995 , 5 , 1–27.

  5. Moog , C. H. , Zheng , Y.-F. , and Liu , P. Input-output equivalence of nonlinear systems and their equations. In Proceedings of the 15th FIFAC World Congress , Barcelona (Camacho , E. F. , Basañez , L. , and de la Puente , J. A. , eds). Elsevier , 2002 , 265–270.

  6. Kotta , Ü. and Mullari , T. Equivalence of different realization methods for higher order nonlinear input-output differential equations. European J. Control , 2005 , 11 , 185–193.
doi:10.3166/ejc.11.185-193

  7. Verdult , V. and Verhaegen , V. Bilinear state space systems for nonlinear dynamical modelling. Theory Bio. Sci. , 2000 , 119 , 1–9.
doi:10.1078/1431-7613-00001

  8. Kotta , Ü. , Nõmm , S. , and Zinober , A. S. I. Classical state space realizability of input-output bilinear models. Internat. J. Control , 2003 , 76 , 1224–1232.
doi:10.1080/0020717031000139240

  9. Fliess , M. Generalized controller canonical form for linear and nonlinear dynamics. IEEE TAC , 1990 , 35 , 994–1001.

10. Kotta , Ü. Removing input derivatives in generalized state space systems: a linear algebraic approach. In Proceedings of the 4th International Conference on Actual Problems of Electronic Instrument Engineering. Novosibirsk , 1998 , 391–396.

11. Mullari , T. and Kotta , Ü. Simplification of the generalized state equations. Kybernetika , 2006 , 42 , 617–628.

12. Kotta , Ü. , Mullari , T. , Zinober , A. S. I. , and Kotta , P. State space realizations of bilinear continuous-time input-output equations. Internat. J. Control , 2007 , 80 , 1607–1615.
doi:10.1080/00207170701447106

13. Choquet-Bruhat , Y. , DeWitt-Morette , C. , and Dillard-Bleick , M. Analysis , Manifolds and Physics , Part I: Basics. North-Holland , Amsterdam , 1989.

14. Kotta , Ü. and Sadegh , N. Two approaches for state space realization of Narma models: bridging the gap. Math. Computer Modelling Dynam. Systems , 2002 , 8 , 21–32.
doi:10.1076/mcmd.8.1.21.8340

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December