|
References
Aliev , M. K. and Saks , V. 1997. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Biophys. J. , 73 , 428–445. doi:10.1016/S0006-3495(97)78082-2 Ally , A. and Parks , G. 1992. Rapid determination of creatine , phosphocreatine , purine bases and nucleotides (ATP , ADP , AMP , GTP , GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography. J. Chromatogr. , 575 , 19–27. doi:10.1016/0378-4347(92)80499-G Bernocchi , P. , Ceconi , C. , Carbnoni , A. Pedersini , P. , Curello , S. , and Ferrari , R. 1994. Extraction and assay of creatine phosphate , purine , and pyridine nucleotides in cardiac tissue by reversed-phase high-performance liquid chromatography. Anal. Biochem. , 222 , 374–379. doi:10.1006/abio.1994.1505 Botker , H. E. , Kimose , H. H. , Hellingso , P. , and Nielsen , T. T. 1994. Analytical evaluation of high energy phosphate determination by high performance liquid chromatography in myocardial tissue. J. Mol. Cell. Cardiol. , 26 , 41–48. doi:10.1006/jmcc.1994.1006 Brown , P. R. , Krstulovic , A. M. , and Hartwick , R. A. 1980. Current state of the art in the HPLC analyses of free nucleotides , nucleosides , and bases in biological fluids. Adv. Chromatogr. , 18 , 101–138. Carter , A. J. and Müller , R. E. 1990. Application and validation of an ion-exchange high-performance liquid chromatographic method for measuring adenine nucleotides , creatine and creatine phosphate in mouse brain. J. Chromatogr. , 527 , 31–39. Cecconi , F. , Frassineti , C. , Gans , P. , Iotti , S. , Midollini , S. , Sabatini , A. , and Vacca , A. 2002. Complex formation equilibria of phosphocreatine with sodium , potassium and magnesium ions. Polyhedron , 21 , 1481–1484. doi:10.1016/S0277-5387(02)00951-8 Cordis , G. A. , Engelman , R. M. , and Das , D. K. 1988. Novel dual-wavelength monitoring approach for the improved rapid separation and estimation of adenine nucleotides and creatine phosphate by high-performance liquid chromatography. J. Chromatogr. , 459 , 229–236. doi:10.1016/S0021-9673(01)82031-8 Fürst , W. and Hallström , S. 1992. Simultaneous determination of myocardial nucleotides , nucleosides , purine bases and creatine phosphate by ion-pair high-performance liquid chromatography. J. Chromatogr. , 578 , 39–44. doi:10.1016/0378-4347(92)80222-C Gellerich , F. and Saks , V. A. 1982. Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization. Biochem. Biophys. Res. Comm. , 105 , 1473–1481. doi:10.1016/0006-291X(82)90954-8 Grune , T. and Siems , W. G. 1993. Reversed-phase high-performance liquid chromatography of purine compounds for investigation of biomedical problems: application to different tissues and body fluids. J. Chromatogr. , 18 , 15–40. Juengling , E. and Kammermeier , H. 1980. Rapid assay of adenine nucleotides or creatine compounds in extracts of cardiac tissue by paired-ion reverse-phase high-performance liquid chromatography. Anal. Biochem. , 102 , 358–361. doi:10.1016/0003-2697(80)90167-0 Karatzaferi , C. , DeHaan , A. , Offringa , C. , and Sargeant , A. J. 1999. Improved high-performance liquid chromatographic assay for the determination of “high-energy” phosphates in mammalian skeletal muscle. Application to a single-fibre study in man. J. Chromatogr. B , 730 , 183–191. doi:10.1016/S0378-4347(99)00221-2 Kuznetsov , A. V. , Veksler , V. , Gellerich , F. N. , Saks , V. , Margreiter , R. , and Kunz , W. S. 2008. Analysis of mitochondrial function in situ in permeabilized muscle fibers , tissues and cells. Nature Protocols , 3 , 1–12. doi:10.1038/nprot.2008.61 Sanduja , R. , Ansari , G. A. , and Boor , P. J. 1987. Simultaneous determination of myocardial creatine phosphate and adenine nucleotides by reversed-phase HPLC. Biomed. Chromatogr. , 2 , 156–158. doi:10.1002/bmc.1130020406 Saks , V. A. , Belikova , Yu. O. , and Kuznetsov , A. V. 1991. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim. Biophys. Acta , 1074 , 302–311. Saks , V. A. , Kaambre , T. , Sikk , P. , Eimre , M. , Orlova , E. , Paju , K. , Piirsoo , A. , Appaix , F. , Kay , L. , Regitz-Zagrosek , V. , Fleck , E. , and Seppet , E. 2001. Intracellular energetic units in red muscle cells. Biochem. J. , 356 , 643–657. doi:10.1042/0264-6021:3560643 Saks , V. , Dzeja , P. P. , Guzun , R. , Aliev , M. K. , Vendelin , M. , Terzic , A. , and Wallimann , T. 2007. System analysis of cardiac energetics-exitation-contraction coupling: integration of mitochondrial respiration , phosphotransfer pathways , metabolic pacing , and substrate supply in the heart. In Molecular System Bioenergetics (Saks , V. , ed.). Wiley-VCH Verlag GmbH & Co. KgaA , 367–405. doi:10.1002/9783527621095.ch11 Scott , M. D. , Baudendistel , L. J. , and Dahms , T. E. 1992. Rapid separation of creatine , phosphocreatine and adenosine metabolites by ion-pair reversed-phase high-performance liquid chromatography in plasma and cardiac tissue. J. Chromatogr. , 576 , 149–154. doi:10.1016/0378-4347(92)80186-T Sellevold , O. F. , Jynge , P. , and Aarstad , K. 1986. High performance liquid chromatography: a rapid isocratic method for determination of creatine compounds and adenine nucleotides in myocardial tissue. J. Mol. Cell. Cardiol. , 18 , 517–527. doi:10.1016/S0022-2828(86)80917-8 Smith , R. M. and Alberty , R. A. 1956a. The apparent stability constants of ionic complexes of various adenine phosphates with monovalent cations. J. Phys. Chem. , 60 , 180–184. doi:10.1021/j150536a010 Smith , R. M. and Alberty , R. A. 1956b. The apparent stability constants of ionic complexes various adenosine phosphates with divalent cations. J. Am. Chem. Soc. , 78 , 2376–2380. doi:10.1021/ja01592a009 Vendelin , M. , Eimre , M. , Seppet , E. , Peet , N. , Andrienko , T. , Lemba , M. , Engelbrecht , J. , Seppet , E. K. , and Saks , V. A. 2004. Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle. Mol. Cell. Biochem. , 256/257 , 229–241. doi:10.1023/B:MCBI.0000009871.04141.64 Vendelin , M. , Saks , V. , and Engelbrecht , J. 2007. Principles of mathematical modeling and in silico studies of integrated cellular energetics. In Molecular System Bioenergetics (Saks , V. , ed.). Wiley-VCH Verlag GmbH & Co. KgaA , 407–433. doi:10.1002/9783527621095.ch12 Vives-Bauza , C. , Yang , L. , and Manfredi , G. 2007. Assay of mitochondrial ATP synthesis in animal cells and tissues. Meth. Cell Biol. , 80 , 155–171. doi:10.1016/S0091-679X(06)80007-5 Volonté , M. G. , Yuln , G. , Quiroga , P. , and Consolini , A. E. 2004. Development of an HPLC method for determination of metabolic compounds in myocardial tissue. J. Pharm. Biomed. Anal. , 35 , 647–653. doi:10.1016/j.jpba.2004.02.002 Williams , J. H. , Vidt , S. E. , and Rinehart , J. 2008. Measurement of sarcoplasmic reticulum Ca2+ ATPase activity using high-performance liquid chromatography. Anal. Biochem. , 372 , 135–139. doi:10.1016/j.ab.2007.09.020 Wilson , I. D. , Nicholson , J. K. , Castro-Perez , J. , Granger , J. H. , Johnson , K. A. , Smith , B. W. , and Plumb , R. S. 2005. High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res. , 4 , 591–598. doi:10.1021/pr049769r
|