headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 58, Issue 4
Vol. 58, Issue 3
Vol. 58, Issue 2
Vol. 58, Issue 1
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Ultra performance liquid chromatography analysis of adenine nucleotides and creatine derivatives for kinetic studies; pp. 122–131

(Full article in PDF format) doi: 10.3176/proc.2009.2.04


Authors

Peeter Sikk, Tuuli Käämbre, Heiki Vija, Kersti Tepp, Toomas Tiivel, Anu Nutt, Valdur Saks

Abstract

A rapid method for simultaneous quantification of compounds participating in energy metabolism of cardiac muscle cells (creatine (Cr), phosphocreatine (PCr), ADP, and ATP) is described where a conventional ion-pair reversed phase HPLC separation has been improved by introducing the method based on the recently developed ultra performance liquid chromatography (UPLC) technique. In the 0.005–1 mM concentration range, the calibration curves for Cr, ADP, and ATP as pure standard compounds were fitted by the polynomic relationship y = y0 + ax – bx2 at a high confidence level (R2 > 0.999 in all cases) and that for PCr by a simple linear relationship with R2 > 0.998. The method was applied for the study of the kinetics of PCr production by permeabilized cardimyocytes due to the cellular oxydative phosphorylation reactions. The determined steady-state levels of ADP and ATP as well as the rate of PCr production in different conditions can be used for the verification of the results of mathematical modelling of cardiomyocyte functioning.

Keywords

analytical biochemistry, ultra performance liquid chromatography (UPLC), cardiac energy metabolism, creatine kinase.

References

Aliev , M. K. and Saks , V. 1997. Compartmentalized energy transfer in cardiomyocytes: use of mathematical model­ing for analysis of in vivo regulation of respira­tion. Biophys. J. , 73 , 428–445.
doi:10.1016/S0006-3495(97)78082-2

Ally , A. and Parks , G. 1992. Rapid determination of creatine , phosphocreatine , purine bases and nucleotides (ATP , ADP , AMP , GTP , GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography. J. Chromatogr. , 575 , 19–27.
doi:10.1016/0378-4347(92)80499-G

Bernocchi , P. , Ceconi , C. , Carbnoni , A. Pedersini , P. , Curello , S. , and Ferrari , R. 1994. Extraction and assay of creatine phosphate , purine , and pyridine nucleotides in cardiac tissue by reversed-phase high-performance liquid chromatography. Anal. Biochem. , 222 , 374–379.
doi:10.1006/abio.1994.1505

Botker , H. E. , Kimose , H. H. , Hellingso , P. , and Nielsen , T. T. 1994. Analytical evaluation of high energy phosphate determination by high performance liquid chromato­graphy in myocardial tissue. J. Mol. Cell. Cardiol. , 26 , 41–48.
doi:10.1006/jmcc.1994.1006

Brown , P. R. , Krstulovic , A. M. , and Hartwick , R. A. 1980. Current state of the art in the HPLC analyses of free nucleotides , nucleosides , and bases in biological fluids. Adv. Chromatogr. , 18 , 101–138.

Carter , A. J. and Müller , R. E. 1990. Application and valida­tion of an ion-exchange high-performance liquid chromato­graphic method for measuring adenine nucleotides , creatine and creatine phosphate in mouse brain. J. Chromatogr. , 527 , 31–39.

Cecconi , F. , Frassineti , C. , Gans , P. , Iotti , S. , Midollini , S. , Sabatini , A. , and Vacca , A. 2002. Complex formation equilibria of phosphocreatine with sodium , potassium and magnesium ions. Polyhedron , 21 , 1481–1484.
doi:10.1016/S0277-5387(02)00951-8

Cordis , G. A. , Engelman , R. M. , and Das , D. K. 1988. Novel dual-wavelength monitoring approach for the improved rapid separation and estimation of adenine nucleotides and creatine phosphate by high-performance liquid chromatography. J. Chromatogr. , 459 , 229–236.
doi:10.1016/S0021-9673(01)82031-8

Fürst , W. and Hallström , S. 1992. Simultaneous determination of myocardial nucleotides , nucleosides , purine bases and creatine phosphate by ion-pair high-performance liquid chromatography. J. Chromatogr. , 578 , 39–44.
doi:10.1016/0378-4347(92)80222-C

Gellerich , F. and Saks , V. A. 1982. Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization. Biochem. Biophys. Res. Comm. , 105 , 1473–1481.
doi:10.1016/0006-291X(82)90954-8

Grune , T. and Siems , W. G. 1993. Reversed-phase high-performance liquid chromatography of purine com­pounds for investigation of biomedical problems: application to different tissues and body fluids. J. Chromatogr. , 18 , 15–40.

Juengling , E. and Kammermeier , H. 1980. Rapid assay of adenine nucleotides or creatine compounds in extracts of cardiac tissue by paired-ion reverse-phase high-performance liquid chromatography. Anal. Biochem. , 102 , 358–361.
doi:10.1016/0003-2697(80)90167-0

Karatzaferi , C. , DeHaan , A. , Offringa , C. , and Sargeant , A. J. 1999. Improved high-performance liquid chromato­graphic assay for the determination of “high-energy” phosphates in mammalian skeletal muscle. Applica­tion to a single-fibre study in man. J. Chromatogr. B , 730 , 183–191.
doi:10.1016/S0378-4347(99)00221-2

Kuznetsov , A. V. , Veksler , V. , Gellerich , F. N. , Saks , V. , Margreiter , R. , and Kunz , W. S. 2008. Analysis of mitochondrial function in situ in permeabilized muscle fibers , tissues and cells. Nature Protocols , 3 , 1–12.
doi:10.1038/nprot.2008.61

Sanduja , R. , Ansari , G. A. , and Boor , P. J. 1987. Simultaneous determination of myocardial creatine phosphate and adenine nucleotides by reversed-phase HPLC. Biomed. Chromatogr. , 2 , 156–158.
doi:10.1002/bmc.1130020406

Saks , V. A. , Belikova , Yu. O. , and Kuznetsov , A. V. 1991. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim. Biophys. Acta , 1074 , 302–311.

Saks , V. A. , Kaambre , T. , Sikk , P. , Eimre , M. , Orlova , E. , Paju , K. , Piirsoo , A. , Appaix , F. , Kay , L. , Regitz-Zagrosek , V. , Fleck , E. , and Seppet , E. 2001. Intra­cellular energetic units in red muscle cells. Biochem. J. , 356 , 643–657.
doi:10.1042/0264-6021:3560643

Saks , V. , Dzeja , P. P. , Guzun , R. , Aliev , M. K. , Vendelin , M. , Terzic , A. , and Wallimann , T. 2007. System analysis of cardiac energetics-exitation-contraction coupling: integration of mitochondrial respiration , phospho­transfer pathways , metabolic pacing , and substrate supply in the heart. In Molecular System Bioenergetics (Saks , V. , ed.). Wiley-VCH Verlag GmbH & Co. KgaA , 367–405.
doi:10.1002/9783527621095.ch11

Scott , M. D. , Baudendistel , L. J. , and Dahms , T. E. 1992. Rapid separation of creatine , phosphocreatine and adenosine metabolites by ion-pair reversed-phase high-performance liquid chromatography in plasma and cardiac tissue. J. Chromatogr. , 576 , 149–154.
doi:10.1016/0378-4347(92)80186-T

Sellevold , O. F. , Jynge , P. , and Aarstad , K. 1986. High performance liquid chromatography: a rapid isocratic method for determination of creatine compounds and adenine nucleotides in myocardial tissue. J. Mol. Cell. Cardiol. , 18 , 517–527.
doi:10.1016/S0022-2828(86)80917-8

Smith , R. M. and Alberty , R. A. 1956a. The apparent stability constants of ionic complexes of various adenine phosphates with monovalent cations. J. Phys. Chem. , 60 , 180–184.
doi:10.1021/j150536a010

Smith , R. M. and Alberty , R. A. 1956b. The apparent stability constants of ionic complexes various adenosine phosphates with divalent cations. J. Am. Chem. Soc. , 78 , 2376–2380.
doi:10.1021/ja01592a009

Vendelin , M. , Eimre , M. , Seppet , E. , Peet , N. , Andrienko , T. , Lemba , M. , Engelbrecht , J. , Seppet , E. K. , and Saks , V. A. 2004. Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle. Mol. Cell. Biochem. , 256/257 , 229–241.
doi:10.1023/B:MCBI.0000009871.04141.64

Vendelin , M. , Saks , V. , and Engelbrecht , J. 2007. Principles of mathematical modeling and in silico studies of integrated cellular energetics. In Molecular System Bioenergetics (Saks , V. , ed.). Wiley-VCH Verlag GmbH & Co. KgaA , 407–433.
doi:10.1002/9783527621095.ch12

Vives-Bauza , C. , Yang , L. , and Manfredi , G. 2007. Assay of mitochondrial ATP synthesis in animal cells and tissues. Meth. Cell Biol. , 80 , 155–171.
doi:10.1016/S0091-679X(06)80007-5

Volonté , M. G. , Yuln , G. , Quiroga , P. , and Consolini , A. E. 2004. Development of an HPLC method for determina­tion of metabolic compounds in myocardial tissue. J. Pharm. Biomed. Anal. , 35 , 647–653.
doi:10.1016/j.jpba.2004.02.002

Williams , J. H. , Vidt , S. E. , and Rinehart , J. 2008. Measure­ment of sarcoplasmic reticulum Ca2+ ATPase activity using high-performance liquid chromatography. Anal. Bio­chem. , 372 , 135–139.
doi:10.1016/j.ab.2007.09.020

Wilson , I. D. , Nicholson , J. K. , Castro-Perez , J. , Granger , J. H. , Johnson , K. A. , Smith , B. W. , and Plumb , R. S. 2005. High resolution “ultra performance” liquid chromato­graphy coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res. , 4 , 591–598.
doi:10.1021/pr049769r

 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December