|
|
|
Proceedings of the Estonian Academy of Sciences ISSN 1736-7530 (electronic) ISSN 1736-6046 (print) Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and Chemistry Published since 1952
Proceedings of the Estonian Academy of Sciences ISSN 1736-7530 (electronic) ISSN 1736-6046 (print) Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and Chemistry Published since 1952
|
|
|
|
|
|
Research of oxygen mass transfer through the air–water surface at low bulk concentrations of surfactants; pp. 132–136
|
|
|
|
Authors
Erik Mölder, Taavo Tenno, Toomas Tenno |
AbstractOxygen transfer from the gaseous to the liquid phase is often technologically a very energy-consuming process. We studied the influence of small alcohol molecules (1-butanol, 2-butanol, 2-methyl-propanol, and 2-methyl-2-propanol) as surfactants to oxygen permeability and addressed the importance of experimental methodology. The oxygen mass transfer rate in the air–water surface layer was calculated by using an original technique and the results were compared to the surface tension values obtained by the Du Nouy ring method. Our experiments revealed that oxygen permeability was inhibited already at very low surfactant concentrations (0.1–1 mmol/L), whereas a considerable increase in the surface tension was observed in a 1000-fold higher concentration range. These results demonstrate the importance of methodological considerations in the research of surface action of surfactants.
Keywordssurface chemistry, air–water surface, oxygen permeability, surface tension, oxygen mass transfer.
|
References
1. Brumley , B. H. and Jirka , G. H. Air–water transfer of slightly soluble gases: turbulence , interfacial processes and conceptual models. Physicochem. Hydrodynam. , 1988 , 10 , 295–319. 2. DeMoyer , C. D. , Schierholz , E. L. , Gulliver , J. S. , and Wilhelms , S. C. Impact of bubble and free surface oxygen transfer on diffused aeration systems. Water Res. , 2003 , 37(8) , 1890–1904. doi:10.1016/S0043-1354(02)00566-3 3. Thibodeaux , L. J. Environmental Chemodynamics. Movement of Chemicals in Air , Water and Soil. 2nd edn. Wiley-Interscience Publication , New York , 1966. 4. Mölder , E. , Tenno , T. , and Mashirin , A. The effect of surfactants on oxygen mass-transfer through the air–water interface. Environ. Sci. Pollut. Res. , 2002 , Special Issue 1 , 39–42. doi:10.1007/BF02987424 5. Zhang , J. and Unwin , P. R. Effect of fatty alcohol monolayers on the rate of bromine transfer across the water/air interface: assessment of candidate models using scanning electrochemical microscopy. Langmuir , 2002 , 18 , 1218–1224. doi:10.1021/la011051s 6. Rosen , M. J. and Hua , X. Y. Surface concentrations and molecular interactions in binary mixtures of surfactants. J. Colloid Interface Sci. , 1982 , 86(1) , 164–172. doi:10.1016/0021-9797(82)90052-2 7. Shiao , S. Y. , Patist , A. , Free , M. L. , Chhabra , V. , Huibers , P. D. T. , Gregory , A. , Patel , S. , and Shah , D. O. The importance of sub-angstrom distances in mixed surfactant systems for technological processes. Colloids Surfaces A , 1997 , 128 , 197–208. doi:10.1016/S0927-7757(96)03912-X 8. Penfold , J. , Staples , E. , Tucker , I. , Thomas , R. K. , Woodling , R. , and Dong , C. C. The structure of mixed nonionic surfactant monolayers at the air–water interface: the effects of different alkyl chain lengths. J. Colloid Interface Sci. , 2003 , 262(1) , 235–242. doi:10.1016/S0021-9797(03)00061-4 9. Gogate , P. R. and Pandit , A. B. Survey of measurement techniques for gas–liquid mass transfer coefficient in bioreactors. Biochem. Eng. J. , 1999 , 4 , 7–15. doi:10.1016/S1369-703X(99)00033-9 10. McGinnis , D. F. and Little , J. C. Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model. Water Res. , 2002 , 36 , 4627–4635. doi:10.1016/S0043-1354(02)00175-6 11. Gillot , S. and Heduit , A. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. Water Res. , 2000 , 34(5) , 1756–1762. doi:10.1016/S0043-1354(99)00323-1 12. Özbek , B. and Gayik , S. The studies on the oxygen mass transfer coefficient in a bioreactor. Process Biochem. , 2000 , 36 , 729–741. doi:10.1016/S0032-9592(00)00272-7 13. Wagner , M. R. and Pöpel , H. J. Oxygen transfer and aeration efficiency – influence of diffuser density and blower type. Water Sci. Tech. , 1998 , 38(3) , 1–6. doi:10.1016/S0273-1223(98)00445-4 14. Minones , J. , Jr. , Patino , J. M. R. , Minones , J. , Dynarowicz-Latka , P. , and Carrera , C. Structural and topographical characteristics of dipalmitoyl phosphatidic acid in Langmuir monolayers. J. Colloid Interface Sci. , 2002 , 249 , 388–397. doi:10.1006/jcis.2002.8285 15. Bell , G. R. , Bain , C. D. , and Ward , R. N. Sum-frequency vibrational spectroscopy of soluble surfactants at the air/water interface. J. Chem. Soc. Faraday Trans. , 1996 , 92 , 515–523. doi:10.1039/ft9969200515 16. Daillant , J. , Quinn , K. , Gourier , C. , and Rieutord , F. Grazing incidence surface scattering of X-rays. J. Chem. Soc. Faraday Trans. , 1996 , 92 , 505–513. doi:10.1039/ft9969200505 17. Li , Z. X. , Thomas , R. K. , Rennie , A. R. , and Penfold , J. Neutron reflection study of butanol and hexanol adsorbed at the surface of their aqueous solutions. J. Chem. Soc. Faraday Trans. , 1996 , 92 , 565–572. doi:10.1039/ft9969200565 18. Daghetti , A. , Trasatti , S. , Zagorska , I. , and Koczowski , Z. Orientation of organic adsorbates from thermodynamic parameters: a case study. Colloids Surfaces , 1990 , 51 , 29–36. doi:10.1016/0166-6622(90)80129-R 19. Dynarowicz , P. Recent developments in the modeling of the monolayers structure at the water/air interface. Adv. Colloid Interface Sci. , 1993 , 45 , 215–241. doi:10.1016/0001-8686(93)80029-B 20. Lee , M. Visualization of oxygen transfer across the air–water interface using fluorescence oxygen visualization method. Water Res. , 2002 , 36 , 2140–2146. doi:10.1016/S0043-1354(01)00421-3 21. Woodrow , P. T. and Duke , S. R. Laser-induced fluorescence studies of oxygen transfer across unsheared flat and wavy air–water interfaces. Ind. Eng. Chem. Res. , 2001 , 40(8) , 1985–1995. doi:10.1021/ie000321j 22. Slevin , C. J. , Ryley , S. , Walton , D. J. , and Unwin , P. R. A new approach for measuring the effect of a monolayer on molecular transfer across an air/water interface using scanning electrochemical microscopy. Langmuir , 1998 , 14(19) , 5331–5334. doi:10.1021/la980320k 23. Mölder , E. , Mashirin , A. , and Tenno , T. Measurement of the oxygen mass transfer through the air–water interface. Env. Sci. Pollut. Res. , 2005 , 12(2) , 66–70. doi:10.1065/espr2004.11.223 24. Liss , P. S. Processes of gas exchange across an air–water interface. Deep Sea Res. , 1973 , 20 , 221–238. 25. Lehman , O. R. Oxygen exchange between a model pond and atmosphere. Adv. Water Resour , 1980 , 3(2) , 87–89. doi:10.1016/0309-1708(80)90031-7 26. Nishimura , H. , Nakajima , M. , and Kumagai , M. Exchange of oxygen and carbon dioxide across the water surface during algal blooms in a pond. Water Res. , 1984 , 18(3) , 345–350. doi:10.1016/0043-1354(84)90110-6 27. Fainerman , V. B. and Miller , R. Adsorption kinetics of short-chain alcohols at the water/air interface: diffusion-controlled adsorption under the conditions of a nonequilibrium surface layer. J. Colloid Interface Sci. , 1996 , 178(1) , 168–175. doi:10.1006/jcis.1996.0105 28. Noskov , B. A. Fast adsorption at the liquid–gas interface. Adv. Colloid Interface Sci. , 1996 , 69(1–3) , 63–129. doi:10.1016/S0001-8686(96)00308-9 29. Townsend , D. F. and Ross , S. Dynamic surface tension and foaminess of aqueous solutions of 1-butanol. Langmuir , 1986 , 2(3) , 288–293. doi:10.1021/la00069a005 30. Dynarovicz-Latka , P. , Dhanabalan , A. , and Olivera , O. N. , Jr. Modern physicochemical research on Langmuir monolayers. Adv. Colloid Interface Sci. , 2001 , 91 , 221–293. doi:10.1016/S0001-8686(99)00034-2
|
|
Back
|
|
|
|
|
|
Current Issue:
Vol. 68, Issue 4, 2019

Publishing schedule:
No. 1: 20 March No. 2: 20 June No. 3: 20 September No. 4: 20 December
|
|
|
|
|
|
|
|