ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research of oxygen mass transfer through the air–water surface at low bulk concentrations of surfactants; pp. 132–136
PDF | doi: 10.3176/proc.2009.2.05

Authors
Erik Mölder, Taavo Tenno, Toomas Tenno
Abstract
Oxygen transfer from the gaseous to the liquid phase is often technologically a very energy-consuming process. We studied the influence of small alcohol molecules (1-butanol, 2-butanol, 2-methyl-propanol, and 2-methyl-2-propanol) as surfactants to oxygen permeability and addressed the importance of experimental methodology. The oxygen mass transfer rate in the air–water surface layer was calculated by using an original technique and the results were compared to the surface tension values obtained by the Du Nouy ring method. Our experiments revealed that oxygen permeability was inhibited already at very low surfactant concentrations (0.1–1 mmol/L), whereas a considerable increase in the surface tension was observed in a 1000-fold higher concentration range. These results demonstrate the importance of methodological considerations in the research of surface action of surfactants.
References

  1. Brumley, B. H. and Jirka, G. H. Air–water transfer of slightly soluble gases: turbulence, interfacial processes and conceptual models. Physicochem. Hydrodynam., 1988, 10, 295–319.

  2. DeMoyer, C. D., Schierholz, E. L., Gulliver, J. S., and Wilhelms, S. C. Impact of bubble and free surface oxygen transfer on diffused aeration systems. Water Res., 2003, 37(8), 1890–1904.
doi:10.1016/S0043-1354(02)00566-3

  3. Thibodeaux, L. J. Environmental Chemodynamics. Move­ment of Chemicals in Air, Water and Soil. 2nd edn. Wiley-Interscience Publication, New York, 1966.

  4. Mölder, E., Tenno, T., and Mashirin, A. The effect of surfactants on oxygen mass-transfer through the air–water interface. Environ. Sci. Pollut. Res., 2002, Special Issue 1, 39–42.
doi:10.1007/BF02987424

  5. Zhang, J. and Unwin, P. R. Effect of fatty alcohol mono­layers on the rate of bromine transfer across the water/air interface: assessment of candidate models using scanning electrochemical microscopy. Lang­muir, 2002, 18, 1218–1224.
doi:10.1021/la011051s

  6. Rosen, M. J. and Hua, X. Y. Surface concentrations and molecular interactions in binary mixtures of sur­factants. J. Colloid Interface Sci., 1982, 86(1), 164–172.
doi:10.1016/0021-9797(82)90052-2

  7. Shiao, S. Y., Patist, A., Free, M. L., Chhabra, V., Huibers, P. D. T., Gregory, A., Patel, S., and Shah, D. O. The importance of sub-angstrom distances in mixed surfactant systems for technological processes. Colloids Surfaces A, 1997, 128, 197–208.
doi:10.1016/S0927-7757(96)03912-X

  8. Penfold, J., Staples, E., Tucker, I., Thomas, R. K., Woodling, R., and Dong, C. C. The structure of mixed nonionic surfactant monolayers at the air–water interface: the effects of different alkyl chain lengths. J. Colloid Interface Sci., 2003, 262(1), 235–242.
doi:10.1016/S0021-9797(03)00061-4

  9. Gogate, P. R. and Pandit, A. B. Survey of measurement techniques for gas–liquid mass transfer coefficient in bioreactors. Biochem. Eng. J., 1999, 4, 7–15.
doi:10.1016/S1369-703X(99)00033-9

10. McGinnis, D. F. and Little, J. C. Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model. Water Res., 2002, 36, 4627–4635.
doi:10.1016/S0043-1354(02)00175-6

11. Gillot, S. and Heduit, A. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. Water Res., 2000, 34(5), 1756–1762.
doi:10.1016/S0043-1354(99)00323-1

12. Özbek, B. and Gayik, S. The studies on the oxygen mass transfer coefficient in a bioreactor. Process Biochem., 2000, 36, 729–741.
doi:10.1016/S0032-9592(00)00272-7

13. Wagner, M. R. and Pöpel, H. J. Oxygen transfer and aeration efficiency – influence of diffuser density and blower type. Water Sci. Tech., 1998, 38(3), 1–6.
doi:10.1016/S0273-1223(98)00445-4

14. Minones, J., Jr., Patino, J. M. R., Minones, J., Dynaro­wicz-Latka, P., and Carrera, C. Structural and topo­graphical characteristics of dipalmitoyl phosphatidic acid in Langmuir monolayers. J. Colloid Interface Sci., 2002, 249, 388–397.
doi:10.1006/jcis.2002.8285

15. Bell, G. R., Bain, C. D., and Ward, R. N. Sum-frequency vibrational spectroscopy of soluble surfactants at the air/water interface. J. Chem. Soc. Faraday Trans., 1996, 92, 515–523.
doi:10.1039/ft9969200515

16. Daillant, J., Quinn, K., Gourier, C., and Rieutord, F. Graz­ing incidence surface scattering of X-rays. J. Chem. Soc. Faraday Trans., 1996, 92, 505–513.
doi:10.1039/ft9969200505

17. Li, Z. X., Thomas, R. K., Rennie, A. R., and Penfold, J. Neutron reflection study of butanol and hexanol adsorbed at the surface of their aqueous solutions. J. Chem. Soc. Faraday Trans., 1996, 92, 565–572.
doi:10.1039/ft9969200565

18. Daghetti, A., Trasatti, S., Zagorska, I., and Koczowski, Z. Orientation of organic adsorbates from thermo­dynamic parameters: a case study. Colloids Surfaces, 1990, 51, 29–36.
doi:10.1016/0166-6622(90)80129-R

19. Dynarowicz, P. Recent developments in the modeling of the monolayers structure at the water/air interface. Adv. Colloid Interface Sci., 1993, 45, 215–241.
doi:10.1016/0001-8686(93)80029-B

20. Lee, M. Visualization of oxygen transfer across the air–water interface using fluorescence oxygen visualiza­tion method. Water Res., 2002, 36, 2140–2146.
doi:10.1016/S0043-1354(01)00421-3

21. Woodrow, P. T. and Duke, S. R. Laser-induced fluor­escence studies of oxygen transfer across unsheared flat and wavy air–water interfaces. Ind. Eng. Chem. Res., 2001, 40(8), 1985–1995.
doi:10.1021/ie000321j

22. Slevin, C. J., Ryley, S., Walton, D. J., and Unwin, P. R. A new approach for measuring the effect of a monolayer on molecular transfer across an air/water interface using scanning electrochemical microscopy. Lang­muir, 1998, 14(19), 5331–5334.
doi:10.1021/la980320k

23. Mölder, E., Mashirin, A., and Tenno, T. Measurement of the oxygen mass transfer through the air–water inter­face. Env. Sci. Pollut. Res., 2005, 12(2), 66–70.
doi:10.1065/espr2004.11.223

24. Liss, P. S. Processes of gas exchange across an air–water interface. Deep Sea Res., 1973, 20, 221–238.

25. Lehman, O. R. Oxygen exchange between a model pond and atmosphere. Adv. Water Resour, 1980, 3(2), 87–89.
doi:10.1016/0309-1708(80)90031-7

26. Nishimura, H., Nakajima, M., and Kumagai, M. Exchange of oxygen and carbon dioxide across the water surface during algal blooms in a pond. Water Res., 1984, 18(3), 345–350.
doi:10.1016/0043-1354(84)90110-6

27. Fainerman, V. B. and Miller, R. Adsorption kinetics of short-chain alcohols at the water/air interface: diffusion-controlled adsorption under the conditions of a nonequilibrium surface layer. J. Colloid Interface Sci., 1996, 178(1), 168–175.
doi:10.1006/jcis.1996.0105

28. Noskov, B. A. Fast adsorption at the liquid–gas interface. Adv. Colloid Interface Sci., 1996, 69(1–3), 63–129.
doi:10.1016/S0001-8686(96)00308-9

29. Townsend, D. F. and Ross, S. Dynamic surface tension and foaminess of aqueous solutions of 1-butanol. Langmuir, 1986, 2(3), 288–293.
doi:10.1021/la00069a005

30. Dynarovicz-Latka, P., Dhanabalan, A., and Olivera, O. N., Jr. Modern physicochemical research on Langmuir mono­layers. Adv. Colloid Interface Sci., 2001, 91, 221–293.
doi:10.1016/S0001-8686(99)00034-2

Back to Issue