headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 58, Issue 4
Vol. 58, Issue 3
Vol. 58, Issue 2
Vol. 58, Issue 1
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Molecularly imprinted polymers: a new approach to the preparation of functional materials; pp. 3–11

(Full article in PDF format) doi: 10.3176/proc.2009.1.01


Authors

Andres Öpik, Anna Menaker, Jekaterina Reut, Vitali Syritski

Abstract

Molecular imprinting is a method for creating specific cavities in synthetic polymer matrices with memory for the template molecules. To date molecularly imprinted polymers (MIPs) have obtained a strong position in materials science and technology, expanding significantly the list of functional materials. This article provides a short review of the molecular imprinting technique with special attention paid to electrosynthesized electrically conducting polymers (ECPs), polypyrrole and poly­ethylenedioxythiophene, as matrix materials for molecular imprinting. We describe two different ECP-based MIP systems: enantioselective thin films of overoxidized polypyrrole imprinted with L-aspartic acid and surface imprinted polyethylene­dioxythiophene for selective protein adsorption.

Keywords

polymer materials, electrically conducting polymers, molecular imprinting, enantioselective recognition, surface imprinting, proteins.

References

  1. Haupt , K. and Mosbach , K. Molecularly imprinted poly­mers and their use in biomimetic sensors. Chem. Rev. , 2000 , 100(7) , 2495–2504.
doi:10.1021/cr990099w

  2. Piletsky , S. A. and Turner , A. P. F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis , 2002 , 14(5) , 317–323.
doi:10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.3.CO;2-X

  3. Shi , H. Q. , Tsai , W. B. , Garrison , M. D. , Ferrari , S. , and Ratner , B. D. Template-imprinted nanostructured sur­faces for protein recognition. Nature , 1999 , 398(6728) , 593–597.
doi:10.1038/19267

  4. Fortina , P. , Kricka , L. J. , Surrey , S. , and Grodzinski , P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Bio­technol. , 2005 , 23(4) , 168–173.
doi:10.1016/j.tibtech.2005.02.007

  5. Mosbach , K. and Ramström , O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnol. , 1996 , 14(2) , 163–170.
doi:10.1038/nbt0296-163

  6. Wulff , G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. , 2002 , 102(1) , 1–27.
doi:10.1021/cr980039a

  7. Polyakov , M. V. Adsorption properties and structure of silica gel. Zh. Fiz. Khim. , 1931 , 2 , 799–905 (in Russian).

  8. Dickey , F. H. Specific adsorption. J. Phys. Chem. , 1955 , 59(8) , 695–707.
doi:10.1021/j150530a006

  9. Pauling , L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. , 1940 , 62(10) , 2643–2657.
doi:10.1021/ja01867a018

10. Wulff , G. and Sarhan , A. The use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed. , 1972 , 11 , 341.

11. Arshady , R. and Mosbach , K. Synthesis of substrate-selective polymers by host–guest polymerization. Macromol. Chem. Phys.–Makromol. Chem. , 1981 , 182(2) , 687–692. doi:10.1002/macp.1981.021820240

12. Ye , L. and Mosbach , K. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater. , 2008 , 20(3) , 859–868.
doi:10.1021/cm703190w

13. Wulff , G. Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew. Chem. Int. Ed. , 1995 , 34(17) , 1812–1832.
doi:10.1002/anie.199518121

14. Sellergren , B. Molecular imprinting by noncovalent inter­actions – tailor-made chiral stationary phases of high selectivity and sample load-capacity. Chirality , 1989 , 1(1) , 63–68.
doi:10.1002/chir.530010112

15. Mayes , A. G. and Whitcombe , M. J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev. , 2005 , 57(12) , 1742–1778.
doi:10.1016/j.addr.2005.07.011

16. Allender , C. J. , Brain , K. R. , and Heard , C. M. Molecu­larly imprinted polymers – preparation , biomedical applications and technical challenges. In Progress in Medicinal Chemistry (King , F. D. and Oxford , A. W. , eds). Elsevier , 1999 , 235–291.

17. Mayes , A. G. and Mosbach , K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. , 1996 , 68(21) , 3769–3774.
doi:10.1021/ac960363a

18. Flores , A. , Cunliff , D. , Whitcombe , M. J. , and Vulf­son , E. N. Imprinted polymers prepared by aqueous suspension polymerization. J. Appl. Polymer Sci. , 2000 , 77(8) , 1841–1850.
doi:10.1002/1097-4628(20000822)77:8<1841::AID-APP22>3.0.CO;2-P

19. Mathew-Krotz , J. and Shea , K. J. Imprinted polymer membranes for the selective transport of targeted neutral molecules. J. Am. Chem. Soc. , 1996 , 118(34) , 8154–8155.
doi:10.1021/ja954066j

20. Jakoby , B. , Ismail , G. M. , Byfield , M. P. , and Velle­koop , M. J. A novel molecularly imprinted thin film applied to a Love wave gas sensor. Sensor. Actuat.
A-Phys.
, 1999 , 76(1–3) , 93–97.

21. Kobayashi , T. , Fukaya , T. , Abe , M. , and Fujii , N. Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir , 2002 , 18(7) , 2866–2872.
doi:10.1021/la0106586

22. Nicholls , I. A. and Rosengren , J. P. Molecular imprinting of surfaces. Bioseparation , 2001 , 10(6) , 301–305.
doi:10.1023/A:1021541631063

23. Malitesta , C. , Losito , I. , and Zambonin , P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem. , 1999 , 71(7) , 1366–1370.
doi:10.1021/ac980674g

24. Spurlock , L. D. , Jaramillo , A. , Praserthdam , A. , Lewis , J. , and Brajter-Toth , A. Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes. Anal. Chim. Acta , 1996 , 336(1–3) , 37–46.
doi:10.1016/S0003-2670(96)00361-3

25. Deore , B. , Chen , Z. D. , and Nagaoka , T. Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix. Anal. Sci. , 1999 , 15(9) , 827–828.
doi:10.2116/analsci.15.827

26. Heeger , A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Met. , 2001 , 125(1) , 23–42.
doi:10.1016/S0379-6779(01)00509-4

27. MacDiarmid , A. G. Synthetic metals: a novel role for organic polymers. Synthetic Met. , 2001 , 125(1) , 11–22.
doi:10.1016/S0379-6779(01)00508-2

28. Gofer , Y. , Sarker , H. , Killian , J. G. , Poehler , T. O. , and Searson , P. C. An all-polymer charge storage device. Appl. Phys. Lett. , 1997 , 71(11) , 1582–1584.
doi:10.1063/1.120074

29. Dennler , G. , Bereznev , S. , Fichou , D. , Holl , K. , Ilic , D. , Koeppe , R. , Krebs , M. , Labouret , A. , Lungen­schmied , C. , Marchenko , A. , Meissner , D. , Melli­kov , E. , Meot , J. , Meyer , A. , Meyer , T. , Neuge­bauer , H. , Öpik , A. , Sariciftci , N. S. , Taillemite , S. , and Wohrle , T. A self-rechargeable and flexible polymer solar battery. Solar Energy , 2007 , 81(8) , 947–957.
doi:10.1016/j.solener.2007.02.008

30. Smela , E. Conjugated polymer actuators. MRS Bull. , 2008 , 33(3) , 197–204.

31. Adhikari , B. and Majumdar , S. Polymers in sensor applications. Prog. Polym. Sci. , 2004 , 29(7) , 699–766.
doi:10.1016/j.progpolymsci.2004.03.002

32. Bobacka , J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis , 2006 , 18(1) , 7–18.
doi:10.1002/elan.200503384

33. Cosnier , S. Recent advances in biological sensors based on electrogenerated polymers: a review. Anal. Lett. , 2007 , 40(7) , 1260–1279.
doi:10.1080/00032710701326643

34. Wallace , G. and Spinks , G. Conducting polymers – bridg­ing the bionic interface. Soft Matter , 2007 , 3(6) , 665–671.
doi:10.1039/b618204f

35. Vernitskaya , T. V. and Efimov , O. N. Polypyrrole: a con­ducting polymer (synthesis , properties , and applica­tions). Usp. Khim. , 1997 , 66(5) , 489–505 (in Russian).

36. Rodriguez , I. , Scharifker , B. R. , and Mostany , J. In situ FTIR study of redox and overoxidation processes in polypyrrole films. J. Electroanal. Chem. , 2000 , 491(1–2) , 117–125.
doi:10.1016/S0022-0728(00)00194-7

37. Shiigi , H. , Kijima , D. , Ikenaga , Y. , Hori , K. , Fukazawa , S. , and Nagaoka , T. Molecular recognition for bile acids using a molecularly imprinted overoxidized poly­pyrrole film. J. Electrochem. Soc. , 2005 , 152(8) , H129–H134.
doi:10.1149/1.1946367

38. Chen , Z. D. , Takei , Y. , Deore , B. A. , and Nagaoka , T. Enantioselective uptake of amino acid with over­oxidized polypyrrole colloid templated with L-lactate. Analyst , 2000 , 125(12) , 2249–2254.
doi:10.1039/b005745m

39. Shiigi , H. , Okamura , K. , Kijima , D. , Hironaka , A. , Deore , B. , Sree , U. , and Nagaoka , T. Fabrication process and characterization of a novel structural isomer sensor – molecularly imprinted overoxidized polypyrrole film. Electrochem. Solid State Lett. , 2003 , 6(1) , H1–H3.
doi:10.1149/1.1524808

40. Ramanaviciene , A. and Ramanavicius , A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glyco­proteins. Biosens. Bioelectron. , 2004 , 20(6) , 1076–1082.
doi:10.1016/j.bios.2004.05.014

41. Ebarvia , B. S. , Cabanilla , S. , and Sevilla , F. Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electro synthesized poly­pyrrole. Talanta , 2005 , 66(1) , 145–152.
doi:10.1016/j.talanta.2004.10.009

42. Ramström , O. and Ansell , R. J. Molecular imprinting technology: challenges and prospects for the future. Chirality , 1998 , 10(3) , 195–209.
doi:10.1002/(SICI)1520-636X(1998)10:3<195::AID-CHIR1>3.0.CO;2-9

43. Maier , N. M. , Franco , P. , and Lindner , W. Separation of enantiomers: needs , challenges , perspectives. J. Chromatogr. A , 2001 , 906(1–2) , 3–33.
doi:10.1016/S0021-9673(00)00532-X

44. Deore , B. , Chen , Z. D. , and Nagaoka , T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem. , 2000 , 72(17) , 3989–3994.
doi:10.1021/ac000156h

45. Syritski , V. , Reut , J. , Menaker , A. , Gyurcsányi , R. E. , and Öpik , A. Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of L-aspartic acid. Electrochim. Acta , 2008 , 53(6) , 2729–2736.
doi:10.1016/j.electacta.2007.10.032

46. Ohtani , S. , Matsushima , Y. , Kobayashi , Y. , and Kishi , K. Evaluation of aspartic acid racemization ratios in the human femur for age estimation. J. Forensic Sci. , 1998 , 43(5) , 949–953.

47. Syritski , V. , Gyurcsányi , R. E. , Öpik , A. , and Tóth , K. Synthesis and characterization of inherently conduct­ing polymers by using scanning electrochemical micro­scopy and Electrochemical Quartz Crystal Micro­balance. Synthetic Met. , 2005 , 152(1–3) , 133–136.
doi:10.1016/j.synthmet.2005.07.097

48. Syritski , V. , Öpik , A. , and Forsén , O. Ion transport inves­tigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochim. Acta , 2003 , 48(10) , 1409–1417.
doi:10.1016/S0013-4686(03)00018-5

49. Liang , H. J. , Ling , T. R. , Rick , J. F. , and Chou , T. C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Anal. Chim. Acta , 2005 , 542(1) , 83–89.
doi:10.1016/j.aca.2005.02.007

50. Bossi , A. , Bonini , F. , Turner , A. P. F. , and Piletsky , S. A. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron. , 2007 , 22(6) , 1131–1137.
doi:10.1016/j.bios.2006.06.023

51. Pap , T. and Horvai , G. Binding assays with molecularly imprinted polymers – why do they work? J. Chromatogr. B–Anal. Technol. Biomed. Life Sci. , 2004 , 804(1) , 167–172.

52. Ge , Y. and Turner , A. P. F. Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol. , 2008 , 26(4) , 218–224.
doi:10.1016/j.tibtech.2008.01.001

53. Bossi , A. , Piletsky , S. A. , Piletska , E. V. , Righetti , P. G. , and Turner , A. P. F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. , 2001 , 73(21) , 5281–5286.
doi:10.1021/ac0006526

54. Yilmaz , E. , Haupt , K. , and Mosbach , K. The use of immobilized templates – a new approach in molecular imprinting. Angew. Chem. Int. Ed. , 2000 , 39(12) , 2115–2118.
doi:10.1002/1521-3773(20000616)39:12<2115::AID-ANIE2115>3.0.CO;2-V

55. Titirici , M. M. , Hall , A. J. , and Sellergren , B. Hier­arch­ically imprinted stationary phases: mesoporous poly­mer beads containing surface-confined binding sites for adenine. Chem. Mater. , 2002 , 14(1) , 21–23.
doi:10.1021/cm011207+

56. Titirici , M. M. , Hall , A. J. , and Sellergren , B. Hierarchical imprinting using crude solid phase peptide synthesis products as templates. Chem. Mater. , 2003 , 15(4) , 822–824.
doi:10.1021/cm025770j

57. Li , Y. , Yang , H. H. , You , Q. H. , Zhuang , Z. X. , and Wang , X. R. Protein recognition via surface molecu­larly imprinted polymer nanowires. Anal. Chem. , 2006 , 78(1) , 317–320.
doi:10.1021/ac050802i

58. Menaker , A. , Syritski , V. , Reut , J. , Öpik , A. , Horváth , V. , and Gyurcsányi , R. E. Electrosynthesized surface imprinted conducting polymer microrods for selective protein recognition. Advanced Materials , 2009 , provisionally accepted.

 
Back

Current Issue: Vol. 68, Issue 3 in Press, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December