headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
Vol. 57, Issue 4
Vol. 57, Issue 3
Vol. 57, Issue 2
Vol. 57, Issue 1
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions; pp. 210–216

(Full article in PDF format) doi: 10.3176/proc.2008.4.02


Authors

Cengizhan Murathan, Cihan Özgür

Abstract

We study Riemannian manifolds M admitting a semi-symmetric metric connection …

Keywords

Levi-Civita connection, semi-symmetric metric connection, conformally flat manifold, quasi-Einstein manifold.

References

  1. Barua , B. and Ray , A. K. Some properties of semisymmetric metric connection in a Riemannian manifold. Indian J. Pure Appl. Math. , 1985 , 16 , 736–740.

  2. Blair , D. E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics , Springer-Verlag , Berlin , 1976.

  3. Chaki , M. C. and Maity , R. K. On quasi Einstein manifolds. Publ. Math. Debrecen , 2000 , 57 , 297–306.

  4. De , U. C. and Biswas , S. C. On a type of semi-symmetric metric connection on a Riemannian manifold. Publ. Inst. Math. (Beograd) (N.S.) , 1997 , 61 , 90–96.

  5. Deszcz , R. On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A , 1992 , 44 , 1–34.

  6. Deszcz , R. and Hotlos , M. On certain subclass of pseudosymmetric manifolds. Publ. Math. Debrecen , 1998 , 53 , 29–48.

  7. Deszcz , R. and Hotlos , M. On some pseudosymmetry type curvature condition. Tsukuba J. Math. , 2003 , 27 , 13–30.

  8. Friedmann , A. and Schouten , J. A. Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. , 1924 , 21 , 211–223.
doi:10.1007/BF01187468

  9. Hayden , H. A. Subspace of a space with torsion. Proc. London Math. Soc. II Series , 1932 , 34 , 27–50.
doi:10.1112/plms/s2-34.1.27

10. Imai , T. Notes on semi-symmetric metric connections. Tensor (N.S.) , 1972 , 24 , 293–296.

11. Ludden , G. D. Submanifolds of cosymplectic manifolds. J. Differ. Geometry , 1970 , 4 , 237–244.

12. Pak , E. On the pseudo-Riemannian spaces. J. Korean Math. Soc. , 1969 , 6 , 23–31.

13. Schouten , J. A. Ricci Calculus. Springer , New York , 1954.

14. Szabó , Z. I. Structure theorems on Riemannian spaces satisfying R(X ,YR = 0 I , the local version. J. Differ. Geometry , 1982 , 17 , 531–582.

15. Szabó , Z. I. Structure theorems on Riemannian spaces satisfying R(X ,YR = 0 II , Global versions. Geom. Dedicata , 1985 , 19 , 65–108.

16. Tamássy , L. and Binh , T. Q. On the non-existence of certain connections with torsion and of constant curvature. Publ. Math. Debrecen , 1989 , 36 , 283–288.

17. Tripathi , M. M. A new connection in a Riemannian manifold. Int. Elec. J. Geom. , 2008 , 1 , 15–24.

18. Yano , K. On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl. , 1970 , 15 , 1579–1586.

19. Yano , K. and Kon , M. Structures on Manifolds. Series in Pure Math. , World Scientific , 1984.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December