headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
Vol. 57, Issue 4
Vol. 57, Issue 3
Vol. 57, Issue 2
Vol. 57, Issue 1
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Scalar, vectorial, and tensorial damage parameters from the mesoscopic background; pp. 132–141

(Full article in PDF format) doi: 10.3176/proc.2008.3.03


Authors

Christina Papenfuss, Péter Ván

Abstract

In the mesoscopic theory a distribution of different crack sizes and crack orientations is introduced. A scalar damage parameter, a second order damage tensor, and a vectorial damage parameter are defined in terms of this distribution function. As an example of a constitutive quantity the free energy density is given as a function of the damage tensor. This equation is reduced in the uniaxial case to a function of the damage vector and in the case of a special geometry, to a function of the scalar damage parameter.

Keywords

damage mechanics, damage, damage parameter, Fabric-tensor, microcracks.

References

  1. Kachanov , L. M. On the time to failure under creep conditions. Izv. AN SSSR , Otd. Tekhn. Nauk , 1958 , 8 , 26–31.

  2. Lemaitre , J. A Course on Damage Mechanics. Springer-Verlag , Berlin , 1996.

  3. Kachanov , M. Continuum model of medium with microcracks. J. Eng. Mech. Div. , 1980 , 106(EM5) , 1039–1051.

  4. Murakami , S. Notion of continuum damage mechanics and its application to anisotropic creep damage theory. J. Eng. Mat. Technol. , 1983 , 105 , 99.

  5. Ju , J. W. On energy-based coupled elastoplastic damage theories: Constitutive modelling and computational aspects. Int. J. Solids Struct. , 1989 , 25(7) , 803–833.
doi:10.1016/0020-7683(89)90015-2

  6. Frémond , M. and Nedjar , B. Damage , gradient of damage and principle of virtual power. Int. J. Solids Struct. , 1996 , 33(8) , 1083–1103.
doi:10.1016/0020-7683(95)00074-7

  7. Murakami , S. and Ohno , N. A continuum theory of creep and creep damage. In 3rd Creep in Structures Symposium , Leicester (Ponter , D. R. and Hayhorst , A. R. , eds). IUTAM , Springer , Berlin , 1980 , 422–443.

  8. Lecki , F. A. and Onat , E. T. Physical nonlinearities in structural analysis. In Tensorial Nature of Damage Measuring Internal Variables. Springer-Verlag , Berlin , 1981 , 140–155.

  9. Chaboche , J.-L. Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int. J. Damage Mech. , 1993 , 2 , 311–329.
doi:10.1177/105678959300200401

10. Kanatani , K.-I. Distribution of directional data and fabric tensors. Int. J. Eng. Sci. , 1984 , 22(2) , 149–164.
doi:10.1016/0020-7225(84)90090-9

11. Rizzi , E. and Carol , I. A formulation of anisotropic elastic damage using compact tensor formalism. J. Elasticity , 2001 , 64(2–3) , 85–109.
doi:10.1023/A:1015284701032

12. Betten , J. , Sklepus , A. and Zolochevsky , A. A constitutive theory for creep behavior of initially isotropic materials sustaining unilateral damage. Mech. Res. Comm. , 2003 , 30 , 251–256.
doi:10.1016/S0093-6413(03)00002-8

13. Maire , J. F. and Chaboche , J. L. A new formulation of continuum damage mechanics (cdm) for composite materials. Aerospace Sci. Technol. , 1997 , 4 , 247–257.
doi:10.1016/S1270-9638(97)90035-3

14. Cauvin , A. and Testa , R. B. Damage mechanics: basic variables in continuum theories. Int. J. Solids Struct. , 1999 , 36(5) , 747–761.
doi:10.1016/S0020-7683(98)00044-4

15. Murakami , S. and Kamiya , K. Constitutive and damage evolution equations. Int. J. Mech. Sci. , 1997 , 39(4) , 473–486.
doi:10.1016/S0020-7403(97)87627-8

16. Ván , P. Internal thermodynamic variables and the failure of microcracked materials. J. Non-Equil. Thermodyn. , 2001 , 26(2) , 167–189.
doi:10.1515/JNETDY.2001.012

17. Ván , P. and Vásárhelyi , B. Second law of thermodynamics and the failure of rock materials. In Rock Mechanics in the National Interest V1 (Tinucci , J. P. , Elsworth , D. and Heasley , K. A. , eds). Balkema Publishers , Lisse-Abingdon-Exton(PA)-Tokyo , 2001 , 767–773. Proceedings of the 9th North American Rock Mechanics Symposium , Washington , USA , 2001.

18. Nemat-Nasser , S. and Hori , M. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland , Amsterdam , 1993.

19. Krajcinovic , D. and Fonseka , G. U. The continuous damage theory of brittle materials. Part 1: General theory. J. Appl. Mech. , 1981 , 48 , 809–815.

20. Krajcinovic , D. Damage Mechanics. Elsevier , Amsterdam , 1996. North-Holland Series in Applied Mathematics and Mechanics.

21. Krajcinovic , D. and Silva , M. A. G. Statistical aspects of the continuous damage mechanics. Int. J. Solids Struct. , 1982 , 18 , 551–562.
doi:10.1016/0020-7683(82)90039-7

22. Luo , D. M. , Takezono , K. and Tao , S. The mechanical behavior analysis of cfcc with overall anisotropic damage by the micro-macro scale method. Int. J. Damage Mech. , 2003 , 12(2) , 141–162.
doi:10.1177/1056789503012002003

23. Rizzi , E. and Carol , I. Dual orthotropic damage-effect tensors with complementary structures. Int. J. Eng. Sci. , 2003 , 41(13–14) , 1445–1495.
doi:10.1016/S0020-7225(03)00034-X

24. Papenfuss , C. Damage evolution in micro-cracked materials under load. In Trends in Continuum Physics (Maruszewski , B. T. , Muschik , W. and Radowicz , A. , eds). World Scientific , 2004 , 223–233.

25. Papenfuss , C. , Böhme , T. , Herrmann , H. , Muschik , W. and Verhás , J. Dynamics of the size and orientation distribution of microcracks and evolution of macroscopic damage parameters. J. Non-Equilib. Thermodyn. , 2007 , 32(2) , 129–143.
doi:10.1515/JNETDY.2007.005

26. Papenfuss , C. Theory of liquid crystals as an example of mesoscopic continuum mechanics. Comp. Mater. Sci. , 2000 , 19 , 45–52.
doi:10.1016/S0927-0256(00)00138-5

27. Ván , P. , Papenfuss , C. and Muschik , W. Mesoscopic dynamics of microcracks. Phys. Rev. E , 2000 , 62(5) , 6206–6215.
doi:10.1103/PhysRevE.62.6206

28. Ván , P. , Papenfuss , C. and Muschik , W. Griffith cracks in the mesoscopic microcrack theory. J. Phys. A , 2004 , 37(20) , 5315–5328. Published online: Condensed Matter , abstract , cond-mat/0211207; 2002.

29. Papenfuss , C. , Ván , P. and Muschik , W. Mesoscopic theory of microcracks. Arch. Mech. , 2003 , 55(5–6) , 481–499.

30. Smith , G. F. On isotropic integrity bases. Arch. Ration. Mech. An. , 1964 , 17 , 282–292.

31. Pipkin , A. C. and Rivlin , R. S. The formulation of constitutive equations in continuum physics 1. Arch. Ration. Mech. An. , 1959 , 4 , 129–144.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December