headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
Vol. 57, Issue 4
Vol. 57, Issue 3
Vol. 57, Issue 2
Vol. 57, Issue 1
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Density functional theory calculations using the finite element method; pp. 155–178

(Full article in PDF format) doi: 10.3176/proc.2008.3.06


Authors

Ondřej Čertík, Jiří Vackář, Jiří Plešek

Abstract

We propose a method to solve Kohn–Sham equations and to calculate electronic states, total energy, and material properties of non-crystalline, non-periodic structures with l-dependent fully non-local real-space ab initio pseudopotentials using finite elements. Contrary to the variety of well established k-space methods, which are based on Bloch's theorem and applicable to periodic structures, we do not assume periodicity in any respect. Precise ab initio environment-reflecting pseudopotentials that have been applied in the k-space, plane wave approach so far, are connected with real space finite-element basis in this work. The main expected asset of the present approach is the combination of efficiency and high precision of ab initio pseudopotentials with applicability not restricted to periodic environment.

Keywords

DFT, pseudopotentials, electronic structure, finite elements.

References

1. Blochl , P. E. Generalized separable potentials for electronic-structure calculations. Phys. Rev. B , 1990 , 41(5414).

2. Dreizler , R. M. and Gross , E. K. U. Density Functional Theory. Springer-Verlag , 1990.

3. Eyert , V. A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comp. Phys. , 1996 , 124 , 271–285.
doi:10.1006/jcph.1996.0059

4. Hamman , D. R. , Schlüter , M. and Chiang , C. Norm-conserving pseudopotentials. Phys. Rev. Lett. , 1979 , 43 , 1494.
doi:10.1103/PhysRevLett.43.1494

5. Martin , R. M. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press , 2005.

6. Pickett , W. E. Pseudopotential methods in condensed matter applications. Comp. Phys. Rep. , 1989 , 9 , 115–198.
doi:10.1016/0167-7977(89)90002-6

7. Srivastava , G. P. Broyden’s method for self-consistent field convergence acceleration. J. Phys. A , 1984 , 17 , L317–L321.
doi:10.1088/0305-4470/17/6/002

8. Vanderbilt , D. and Louie , S. G. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B , 1984 , 30(6118).

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December